Low Earth Orbit Satellites: Potential to Address  August 31, 2021 
the Broadband Digital Divide 
Colby Leigh Rachfal 
As the Coronavirus Disease 2019 (COVID-19) pandemic began to unfold, many federal, state, 
Analyst in 
and local governments, in addition to large and small businesses, implemented remote working or 
Telecommunications 
distance learning options to help abate the spread of the virus. As these decisions were made, 
Policy 
some of the population had the option and the capability to shift activities online, while others did 
  
not. The term digital divide is used to characterize the gap between those who have access to 
telecommunications and information technologies and those who do not. One subset of the digital 
 
divide debate concerns access to high-speed internet service, also known as broadband.  
Broadband technologies are currently being deployed, primarily by the private sector, throughout the United States. While 
the number of new broadband subscribers continues to grow, rural areas—and tribal areas in particular—tend to lag behind 
urban and suburban areas in broadband deployment and the speed of service offered. Federal support has been provided for 
broadband infrastructure deployment. While that funding has contributed to progress in closing the digital divide, there are 
some parts of the United States—particularly rural and remote areas—that still lack access to broadband. These are typically 
areas where it is difficult to deploy terrestrial broadband technologies, such as fiber optic cable or cable modem, due to build 
out challenges with terrain or cost. Broadband offered through satellite technologies may be the only option for some such 
communities at present, but service provided by satellites in geostationary orbit (GEO) may not be as reliable and resilient as 
wired broadband technologies, such as fiber. 
A newer satellite broadband technology—provided by satellites in low Earth orbit (LEO)—may hold promise for further 
addressing the digital divide, especially in remote or rural areas. With the introduction of LEO satellites, which are positioned 
at a much lower altitude than GEO satellites, there is potential for satellite broadband to deliver speeds closer to those that 
can be achieved with fiber, as well as lower lag times or latency.  
Companies are in the process of developing, testing, and deploying LEO satellites for broadband delivery with the hope that 
they may provide higher speeds, lower latency, and expanded coverage. There are many unknowns—for example, whether 
LEO satellites can consistently provide the anticipated lower latency and higher speeds. Other uncertainties include what 
LEO satellite provider competition might look like, or how affordable broadband service provided by LEO satellites may—or 
may not—be. As the development, testing, and deployment of LEO satellites progress, considerations for Congress may 
include:  
  the potential to narrow—or widen—the digital divide,  
  evolving regulatory policies,  
  reaching fiber-like speeds and other performance challenges, 
  competition, and 
  selected pilot programs.  
If LEO satellites provide fiber-like speeds and low latency to remote and rural areas, providing ubiquitous broadband, related 
issues may become ripe for congressional consideration—such as the potential for broadband infrastructure to reach all 
consumers or broadband adoption and affordability issues. 
 
 
Congressional Research Service 
 
 link to page 4  link to page 5  link to page 6  link to page 6  link to page 7  link to page 7  link to page 8  link to page 10  link to page 13  link to page 13  link to page 13  link to page 15  link to page 16  link to page 16  link to page 18  link to page 19  link to page 20  link to page 21  link to page 21  link to page 22  link to page 23  link to page 6  link to page 9  link to page 11  link to page 12  link to page 12  link to page 14  link to page 14  link to page 23 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Contents 
Introduction ..................................................................................................................................... 1 
Broadband Technologies ........................................................................................................... 2 
The Digital Divide ..................................................................................................................... 3 
Challenges to Deploying Broadband in Remote Areas ....................................................... 3 
Federal Broadband Programs to Address the Digital Divide .............................................. 4 
Satellite Broadband ......................................................................................................................... 4 
Geostationary Satellites ............................................................................................................. 5 
Low Earth Orbit Satellites ......................................................................................................... 7 
Policy Issues for Congress............................................................................................................. 10 
Potential to Narrow—or Widen—the Digital Divide .............................................................. 10 
RDOF Performance Tiers ................................................................................................. 10 
Nonduplication Policies and Competition ........................................................................ 12 
Evolving Regulatory Policies .................................................................................................. 13 
Limited Spectrum and Potential Interference Issues ......................................................... 13 
Orbital Debris and Space Traffic Management ................................................................. 15 
Reaching Fiber-like Speeds and Capacity Challenges ............................................................ 16 
Competition ............................................................................................................................. 17 
Selected Pilot Programs .......................................................................................................... 18 
Addressing the Digital Divide: What Happens Next? ............................................................. 18 
Broadband Adoption ......................................................................................................... 19 
Concluding Observations .............................................................................................................. 20 
 
Tables 
Table 1. Broadband Download and Upload Speed Ranges ............................................................. 3 
Table 2. Selected Major GEO Satellite Providers in the United States ........................................... 6 
Table 3. Selected Major LEO Satellite Providers ............................................................................ 8 
Table 4. Estimated Average Monthly Prices for Fixed Broadband Services, 2020 ......................... 9 
Table 5. Average Equipment Fees, 2019-2020 ................................................................................ 9 
Table 6. Service Tiers for RDOF Phase I Auction .......................................................................... 11 
Table 7. RDOF Latency Requirements ........................................................................................... 11 
  
Contacts 
Author Information ........................................................................................................................ 20 
 
Congressional Research Service 
 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Introduction 
Access to high-speed internet, known as broadband, has become increasingly essential as more 
aspects of daily life move online. This trend has become particularly apparent during the 
Coronavirus Disease 2019 (COVID-19) pandemic, as employers in some sectors transitioned 
their workers from on-site work to telework and schools migrated their students from classrooms 
to distance learning. As these decisions were made, some had the option and the capability to shift 
activities online, while others did not. This is known as the digital divide, a term used to 
characterize the gap between those who have access to telecommunications and information 
technologies and those who do not. 
Broadband is deployed primarily by the private sector. The comparatively lower population 
density of rural and tribal areas, along with difficult topography in some cases, contributes to 
lower broadband penetration rates relative to urban and suburban areas. According to the Federal 
Communications Commission (FCC), there is “significant ongoing progress” in broadband 
deployment, but “it remains the case that rural and Tribal areas continue to lag behind.”1  
Federal agencies such as the FCC, the National Telecommunications and Information 
Administration (NTIA, an agency at the Department of Commerce), and the Rural Utilities 
Service (RUS, an agency at the U.S. Department of Agriculture) have directed financial resources 
to help increase broadband availability—chiefly for infrastructure buildout. While this funding 
helps to increase availability, reliable methods to close the digital divide are considered 
inadequate in some areas due to geographic limitations.  
Communications satellites have been operating in low Earth orbit (LEO) since the early 2000s; 
previous large-scale plans were cancelled or reduced due to high costs and limited demand.2 With 
higher demand for broadband service—especially in light of the COVID-19 pandemic—and to 
overcome some of these geographic limitations, several companies are developing constellations 
of satellites in low Earth orbit to provide broadband service from space. These newer LEO 
satellite constellations for broadband are in the initial stages of development, testing, and 
deployment, and the companies involved propose to offer broadband speeds comparable to those 
of fiber or cable internet service. LEO satellites may play a role in efforts to expand broadband 
access, encourage investment in new broadband technologies, and help bring more users online—
especially in rural or remote areas.  
This report discusses selected geostationary (GEO) satellite broadband providers—which have 
provided space-based broadband for decades—and selected LEO satellite broadband providers, 
highlighting the differences between the two technologies. Each LEO satellite broadband 
provider appears to be approaching deployment differently; successful efforts may provide 
models for future initiatives. The report discusses the potential for LEO satellites to address the 
digital divide, as well as their potential limitations for achieving that goal. The second half of the 
report focuses on policy issues and considerations for Congress, such as the possible impacts on 
current federal broadband programs and evolving regulatory issues. 
                                                 
1 Federal Communications Commission, Fourteenth Broadband Deployment Report, January 19, 2021, p. 4, available 
at https://docs.fcc.gov/public/attachments/FCC-21-18A1.pdf. 
2 John Garrity and Arndt Husar, Digital Connectivity and Low Earth Orbit Satellite Constellations, Asian Development 
Bank, April 2021, p. 8, available at https://www.adb.org/sites/default/files/publication/696521/sdwp-076-digital-
connectivity-low-earth-orbit-satellite.pdf. 
Congressional Research Service  
 
1 
 link to page 6 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Broadband Technologies 
Broadband is high-speed internet service that is faster than traditional dial-up and always on. It 
can be delivered through various technologies, such as: 
  Digital Subscriber Line (DSL), 
  Cable modem, 
  Fiber optic cable, 
  Wireless, 
  Satellite, and 
  Broadband over Powerlines (BPL).3 
Broadband gives users the ability to send and receive data at volumes and speeds that support a 
wide range of applications, including voice and video communications, entertainment, 
telemedicine, distance education, telework, and ecommerce.  
The FCC has set a minimum speed that it uses to define what it considers broadband service. In 
2015, citing changing broadband usage patterns and multiple devices using broadband within 
single households, the FCC set this benchmark speed at “25/3 Megabits per second” (Mbps), 
meaning 25 Mbps for downloading data and 3 Mbps for uploading data. 25/3 Mbps is an 
asymmetric speed, which means higher download speeds may be achieved, but upload speeds 
will be slower. The speeds needed for adequate performance vary by online activity (e.g., general 
web browsing and email require less speed than streaming video).  
Additional speed may enhance the performance of some online activities.4 For example, faster 
speeds would allow multiple users in a household to simultaneously participate in high-definition 
video conferencing for work or school, browse, stream videos, and play online games. 
Additionally, faster speeds may allow users to keep up with future bandwidth demands associated 
with a shift of many household functions online, such as phone and television service, 
thermostats, video doorbells and security cameras, and connected appliances. Broadband speeds 
vary significantly depending on the technology. For example, fiber can provide faster download 
and upload speeds than DSL or cable (see Table 1). 
                                                 
3 DSL uses copper telephone wires to transmit data. Cable modem uses coaxial cables—the same used for cable 
television. Fiber optic cable uses pulses of light shot by lasers through thin strands of glass. Wireless uses a radio 
connection between a user and a service provider’s terrestrial antennae. Satellite uses a radio connection between a user 
and a service provider’s space-based antenna. BPL uses power lines. For further information, see FCC, “Types of 
Broadband Connections,” June 23, 2014, available at https://www.fcc.gov/general/types-broadband-connections. 
4 Federal Communications Commission, Broadband Speed Guide, available at https://www.fcc.gov/consumers/guides/
broadband-speed-guide. 
Congressional Research Service  
 
2 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Table 1. Broadband Download and Upload Speed Ranges 
Selected Technologies 
Broadband Technology 
Download Speed Range 
Upload Speed Range  
DSL  
5-35 Mbps 
1-10 Mbps 
Cable  
10-500 Mbps 
5-50 Mbps 
Fiber 
250-1,000 Mbps 
250-1,000 Mbps 
Source: Tyler Cooper, DSL vs Cable vs Fiber: Comparing Internet Options, BroadbandNow, May 3, 2021, available 
at https://broadbandnow.com/guides/dsl-vs-cable-vs-fiber. 
Notes: Mbps means megabits per second.  
Consumers typically prefer fiber, if available, because of its potential for faster speeds and lower 
latency (i.e., lag time). A challenge to providing broadband through fiber to some rural areas is 
installation cost. Statistics compiled by the Department of Transportation put the average cost of 
laying fiber at $27,000 per mile.5 Another challenge is the potential for a lower return on 
investment for broadband providers in sparsely populated areas with fewer potential customers. 
Individuals, households, businesses, and institutions in rural areas that do not have access to fiber 
broadband may have access to other options, such as satellite, cellular hotspot, or dial-up internet 
service, but at speeds that are likely to be slower than the speeds achieved by fiber.6  
The Digital Divide 
The term digital divide describes the gap between those who have access to broadband and those 
who do not. During the COVID-19 pandemic, many federal, state, and local governments, in 
addition to large and small businesses, implemented remote working or distance learning policies 
to help mitigate the spread of the disease. The pandemic thus highlighted the importance of 
internet access. For millions of children, it means access to education. For many workers, it 
means being able to perform their jobs remotely. For patients, it means being able to speak with a 
doctor. Additionally, the internet is increasingly how citizens access government services, seek 
employment, find homes, and stay connected with friends, family, and hobbies.7 
Challenges to Deploying Broadband in Remote Areas  
The digital divide exists in both urban and rural areas, but substantial segments of rural and tribal 
areas lack the infrastructure needed to access high-speed internet service.8 Many rural and tribal 
areas are remote, have low numbers of geographically dispersed potential users relative to more 
densely populated urban and suburban areas, and may have terrain, such as mountain ranges or 
ground that is frozen for long periods of time, which makes deployment difficult. Challenging 
topography can also increase deployment costs.  
                                                 
5 Sally Aman, Dig Once: A Solution for Rural Broadband, USTelecom, April 12, 2017, available at 
https://www.ustelecom.org/dig-once-a-solution-for-rural-broadband/.  
6 Government Technology, Rural Communities Suffer the Most Without Access to the Web, available at 
https://www.govtech.com/network/rural-communities-suffer-the-most-without-access-to-the-web.html. 
7 Emily Stewart, Give Everybody the Internet, Vox, September 10, 2020, available at https://www.vox.com/recode/
2020/9/10/21426810/internet-access-covid-19-chattanooga-municipal-broadband-fcc. 
8 Andrew Perrin, Digital Gap Between Rural and Nonrural America Persists, Pew Research Center, May 31, 2019, 
available at https://www.pewresearch.org/fact-tank/2019/05/31/digital-gap-between-rural-and-nonrural-america-
persists/. 
Congressional Research Service  
 
3 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Another challenge is the return on investment for broadband service providers. For wireline 
broadband technologies—such as cable and fiber—in particular, greater geographical distance 
between customers reduces a provider’s ability to spread costs over a large subscriber base. 
Additionally, broadband providers are often motivated, especially in the near term, by the need to 
demonstrate profitability and attract investors,9 which may impact their incentives to invest in 
broadband in high-cost and low-density rural and tribal areas relative to urban and suburban 
areas. 
Federal Broadband Programs to Address the Digital Divide 
Because the infrastructure cost per connection in rural areas is often high, broadband deployment 
in those areas may not be economically feasible without federal or state subsidies.10 Subsidies for 
broadband deployment have therefore been the main way the federal and state governments have 
addressed the digital divide.  
Federal support for broadband deployment is provided primarily through the Universal Service 
Fund (USF) programs administered by the FCC, the broadband and telecommunications 
programs of RUS, and NTIA.11 A number of other federal programs also provide subsidies to 
expand broadband.12 Although these programs have helped increase broadband deployment and 
coverage––especially as many of the programs focus on rural, unserved, and underserved areas—
approximately 14.5 million Americans still live in areas without access to broadband at speeds of 
at least 25/3 Mbps.13 Addressing––and ultimately closing––the digital divide may depend on 
technological innovation. Providing broadband service using low Earth orbit satellites is one 
option that some experts say is promising.14 
Satellite Broadband 
Satellite broadband is, as the name indicates, the provision of broadband internet service from 
satellites either in geostationary or geosynchronous orbit (GEO) or low Earth orbit (LEO). 
Satellites use specific segments or “bands” of spectrum—radio frequencies used to transmit 
signals wirelessly from one facility or device to another. 15 Use of radio frequencies16 is regulated 
to avoid interference between users. In the United States, two agencies manage spectrum use—
NTIA and the FCC. NTIA manages federal agency use of spectrum (e.g., use by the Army, the 
                                                 
9 Ernesto Falcon, Cory Doctorow, and Katharine Trendacosta, Frontier’s Bankruptcy Reveals Why Big ISPs Choose to 
Deny Fiber to So Much of America, Electronic Frontier Foundation, April 30, 2020, available at https://www.eff.org/
deeplinks/2020/04/frontiers-bankruptcy-reveals-cynical-choice-deny-profitable-fiber-millions. 
10 Rich Contreras, Making Rural Fiber Deployments Cost Effective, PPC Broadband, available at https://www.ppc-
online.com/blog/making-rural-fiber-deployments-cost-effective. 
11 For more information, see CRS Report R46613, The Digital Divide: What Is It, Where Is It, and Federal Assistance 
Programs, by Colby Leigh Rachfal. 
12 BroadbandUSA, Federal Funding, available at https://broadbandusa.ntia.doc.gov/resources/federal/federal-funding. 
13 Federal Communications Commission, Fourteenth Broadband Deployment Report, January 19, 2021, p. 2, available 
at https://docs.fcc.gov/public/attachments/FCC-21-18A1.pdf. 
14 Jared Lindzon, Remote Work Can’t Change Everything Until We Fix this $80 Billion Problem, Fast Company, 
November 30, 2020, available at https://www.fastcompany.com/90578964/rural-internet-broadband-access. 
15 Riley Davis, What is Spectrum? A Brief Explainer, CTIA, June 5, 2018, available at https://www.ctia.org/news/what-
is-spectrum-a-brief-explainer. 
16 Radio spectrum is the range of radio frequencies that are used for communicating. 
Congressional Research Service  
 
4 
 link to page 9  link to page 16 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Federal Aviation Administration, the Federal Bureau of Investigation).17 The FCC administers 
spectrum for nonfederal use (i.e., commercial use, state and local government use). As an 
example of how the FCC manages spectrum, in March 2018, the FCC approved SpaceX’s 
application to use certain frequencies to deploy and operate 4,425 LEO communications 
satellites.18 In July 2020, the FCC granted approval for Amazon to deploy and operate 3,236 
satellites for Project Kuiper, an initiative to build a LEO satellite constellation.19 
To deploy a satellite constellation, a provider needs spectrum rights;20 and to use satellite 
broadband, a consumer must have: 
  an antenna, known as a satellite dish or base station, typically two to three feet in 
diameter, 
  a satellite internet modem, and 
  a clear line of sight to the provider’s satellite(s).21 
The first commercial communications satellite, Telstar, was launched on July 10, 1962.22 More 
than 2,000 commercial communications satellites are now in orbit.23 These satellites can be 
categorized by their orbits. GEO satellites have provided commercial internet access since the 
early 2000s. For information on selected major GEO satellite providers, see Table 2. The 
provision of broadband from LEO satellites is in the testing, development, and early deployment 
phases.24  
Geostationary Satellites 
GEO satellites orbit the Earth above the equator at an altitude of 22,236 miles, so that their orbital 
motion exactly matches Earth’s rotation. As a result, they stay in the same position relative to 
points on the Earth’s surface—a useful feature for applications such as weather monitoring, 
communications, and surveillance.25 According to the FCC, broadband service from GEO 
satellites at speeds of 25/3 Mbps is available to nearly the entire U.S. population.26 GEO satellites 
                                                 
17 Federal Communications Commission, Radio Spectrum Allocation, available at https://www.fcc.gov/engineering-
technology/policy-and-rules-division/general/radio-spectrum-allocation. 
18 Federal Communications Commission, FCC Authorizes SpaceX to Provide Broadband Satellite Services, March 29, 
2018, p. 1, available at https://www.fcc.gov/document/fcc-authorizes-spacex-provide-broadband-satellite-services. 
19 Amazon, Amazon Receives FCC Approval for Project Kuiper Satellite Constellation, July 30, 2020, available at 
https://www.aboutamazon.com/news/company-news/amazon-receives-fcc-approval-for-project-kuiper-satellite-
constellation. 
20 For more information, see “Evolving Regulatory Policies.” 
21 Federal Communications Commission, Getting Broadband Q&A, available at https://www.fcc.gov/consumers/
guides/getting-broadband-qa. 
22 Alex Miller, Satellite Internet: Reaching Across the Globe to Connect the Unconnected, Viasat, March 5, 2020, 
available at https://www.viasat.com/about/newsroom/blog/connect-the-unconnected/.  
23 Union of Concerned Scientists, UCS Satellite Database, https://www.ucsusa.org/resources/satellite-database, updated 
January 1, 2021. 
24 John Dilley, The Past, Present, and Future of Satellite Internet, SatelliteInternet, April 26, 2019, available at 
https://www.satelliteinternet.com/resources/history-and-future-of-satellite-internet/. 
25 Elizabeth Howell, What Is a Geosynchronous Orbit, Space.com, available at https://www.space.com/29222-
geosynchronous-orbit.html. 
26 Federal Communications Commission, 2020 Broadband Deployment Report, April 20, 2020, p. 15, available at 
https://docs.fcc.gov/public/attachments/FCC-20-50A1.pdf. 
Congressional Research Service  
 
5 
 link to page 12  link to page 12  link to page 12 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
require just three satellites for the equivalent coverage of the earth, as compared to LEO satellites, 
which have anywhere from 40 to over 600 satellites in their earth coverage constellation.27  
There are some limitations for GEO satellite providers, as satellites are expensive to launch and 
have a roughly 15-year service life in orbit.28 There are also some limitations of GEO satellite 
broadband that may make it less desirable for users than technologies such as fiber or cable. For 
example, due to the distance the data must travel to a satellite in orbit and back, consumers using 
GEO satellite service can experience greater latency––a delay between when an action is taken 
(e.g., clicking on a link to visit a website) and when the result is shown—than other forms of 
internet service. Latency varies by broadband technology.29 Additionally, weather conditions 
(such as snow) and mountainous or heavily forested terrain may also cause interruptions in 
service due to the requirement that the satellite be in view of both the customer’s and the 
provider’s ground stations.30 Cost can also be a limitation. The average cost of a GEO satellite 
broadband plan in the United States is about $123 per month—significantly more than the 
average cost of a cable or fiber plan, which is about $52-$59 per month (see Table 4). Satellite 
equipment fees are also higher than the equipment fees associated with cable and fiber (see Table 
5). 
Table 2. Selected Major GEO Satellite Providers in the United States  
Maximum Advertised 
Average Latency 
GEO Provider 
Speeds 
Hughes Network Systems 
25/3 Mbps 
638 ms  
Viasat 
100/3 Mbps 
638 ms  
Source: HughesNet, How Fast Is HughesNet Gen5?, available at https://www.hughesnet.com/get-started; Viasat, 
Reliable, High-Speed Satellite Home Internet Plans, available at https://www.viasat.com/home-internet/plans/; Alex 
Mil er, Satellite Internet Latency: What’s the Big Deal?, Viasat, September 5, 2017, available at 
https://www.viasat.com/about/newsroom/blog/satellite-internet-latency-whats-the-big-deal/. 
Notes: Mbps means megabits per second and ms means mil iseconds. The HughesNet website states, “The 
HughesNet Gen5 service plans are designed to deliver download speeds of 25 Mbps and upload speeds of 3 
Mbps, but individual customers may experience different speeds at different times of the day. Speeds and 
uninterrupted use are not guaranteed and may vary based on a variety of factors including: the configuration of 
your computer, the number of concurrent users, network or Internet congestion, the capabilities and content of 
the websites you are accessing, network management practices as deemed necessary, and other factors.” The 
Viasat website states, “Speeds and availability may vary by region. Speeds up to 100Mbps available in select 
areas.”  
                                                 
27 Paul Struhsaker, The Race to Space: Winners and Losers as Providers Try to Connect the World, Carnegie 
Technologies, available at https://www.carnegietechnologies.com/news-updates/the-race-to-space-winners-and-losers-
as-providers-try-to-connect-the-world/. 
28 Ibid.  
29 Fiber-to-the-home has the best performance in terms of latency, with a 17 milliseconds (ms) average. Cable averages 
28 ms. DSL averages 44 ms and ranges as high as approximately 75 ms. A lower latency number is better than a higher 
latency number. For more information, see Federal Communications Commission, Measuring Broadband America, A 
Report on Consumer Wireline Broadband Performance in the U.S., p. 22, available at https://docs.fcc.gov/public/
attachments/DOC-308828A1.pdf. 
30 BroadbandNow, Satellite Internet in the United States, available at https://broadbandnow.com/Satellite. 
Congressional Research Service  
 
6 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Low Earth Orbit Satellites 
LEO satellites operate anywhere from 311 miles to 1,243 miles above the Earth’s surface31—
much lower than GEO satellites, which orbit at 22,236 miles above the Earth.32 LEO satellites for 
broadband are in the initial stages of development, testing, and deployment. Because transmitted 
data does not have to travel as far to reach the satellite and return to Earth, LEO operators expect 
to offer faster broadband speeds and less latency than GEO satellite service.33 Unlike GEO 
satellites, LEO satellites are constantly moving across the sky as seen from the ground and each 
individual satellite is only within line-of-sight of a fixed point on Earth for a period of time. This 
requires the use of thousands of satellites to maintain coverage,34 but it may mitigate loss of 
coverage due to weather or obstructions. LEO satellites are also not restricted to orbits over the 
equator, so they may be able to provide better service at high latitudes.35  
While LEO satellites cost less than GEO satellites,36 the total cost of a constellation of LEO 
satellites can be substantial, as hundreds or thousands of satellites may be required to provide 
global coverage because of their smaller beams.37 Additionally, satellites in LEO are affected by 
an atmospheric drag that makes the orbit deteriorate gradually. As a result, the typical lifetime of 
a LEO satellite is 7-10 years.38 
Although LEO satellite providers plan to offer higher speeds, lower latency, and greater 
broadband coverage than GEO satellites, uncertainties remain, including: 
  Which companies will be able to achieve sustainable profitability? 
  Will user terminal39 and service plan costs end up being competitive with the 
equipment and service plans of other broadband technologies? 
  Will LEO satellite providers be able to meet broadband service expectations and 
attract users?40 
                                                 
31 Washington Post, Why Low-Earth Orbit Satellites Are the New Space Race, July 10, 2020, available at 
https://www.washingtonpost.com/business/why-low-earth-orbit-satellites-are-the-new-space-race/2020/07/10/51ef1ff8-
c2bb-11ea-8908-68a2b9eae9e0_story.html. 
32 Viasat, Geostationary Satellites, available at https://www.viasat.com/space-innovation/space-systems/geo-satellites/. 
33 SatelliteInternet, The Best Satellite Internet Providers of 2021, available at https://www.satelliteinternet.com/. 
34 Rob Rutkowski, 5 FAQs About Low Earth Orbit (LEO) Satellite Constellations, Bliley Technologies, June 29, 2017, 
available at https://blog.bliley.com/5-faq-answers-new-space-leo-satellite-constellations. 
35 The European Space Agency, Low Earth Orbit, February 3, 2020, available at https://www.esa.int/ESA_Multimedia/
Images/2020/03/Low_Earth_orbit. 
36 LEO satellites cost approximately $500,000 to $45 million per satellite. GEO satellites cost approximately $100 
million to $400 million per satellite. For more information see International Telecommunication Union, The Last-Mile 
Internet Connectivity Solutions Guide, 2020, p. 70, available at https://www.itu.int/en/ITU-D/Technology/Documents/
LMC/The%20Last-Mile%20Internet%20Connectivity%20Solutions%20Guide.pdf. 
37 International Telecommunication Union, The Last-Mile Internet Connectivity Solutions Guide, 2020, p. 70, available 
at https://www.itu.int/en/ITU-D/Technology/Documents/LMC/The%20Last-
Mile%20Internet%20Connectivity%20Solutions%20Guide.pdf. 
38 ScienceDirect, Low Earth Orbit, available at https://www.sciencedirect.com/topics/engineering/low-earth-orbit. 
39 A user terminal is a dish that connects the customer to the satellites and enables broadband access. 
40 David Jarvis, Five Key Uncertainties Around High-Speed Internet from Low Earth Orbit, International 
Telecommunication Union, August 18, 2020, available at https://www.itu.int/en/myitu/News/2020/08/18/07/51/
Uncertainties-high-speed-Internet-low-earth-orbit-LEO-satellite-broadband. 
Congressional Research Service  
 
7 
 link to page 11 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Table 3 provides information about projected speeds and latency for four major companies that 
are seeking to provide broadband through LEO satellites. These companies are at various stages 
in development, testing, and deployment: 
  SpaceX is delivering “initial beta service” in the United States and other 
countries under the name Starlink.41 SpaceX has launched more than 1,730 
Starlink satellites, with plans to launch 42,000.42 
  Amazon’s Project Kuiper proposes to deliver high-speed, low-latency broadband 
services by operating 3,236 LEO satellites.43 Amazon plans to launch half of 
these by the end of July 2026.44 
  OneWeb has 74 LEO satellites. OneWeb plans to launch and operate 1,000 
satellites by August 2026, plus an additional 926 by August 2029.45  
  Telesat’s constellation is composed of 298 LEO satellites and may scale to 512 
LEO satellites.46 The first LEO satellite was launched in January 2018 and is 
supporting live demonstrations across a variety of markets and applications.47 
Table 3. Selected Major LEO Satellite Providers 
Projected 
Projected 
Projected Upload 
Download 
Latency  
LEO Provider 
Speeds 
Speeds 
Amazon 
Up to 400 Mbps  
Unknown 
Unknown 
OneWeb 
Up to 200 Mbps 
50 Mbps 
32 ms 
SpaceX 
100 Mbps 
20 Mbps 
30 ms 
Telesat 
50 Mbps 
10 Mbps 
30-60 ms 
Sources: Space Exploration Technologies Corporation, Order Starlink, available at https://www.starlink.com/; 
David Goldman, IBFS File No. SAT-MOD-20200417-00037; RM-11855, Space Exploration Technologies 
Corporation, January 22, 2021, available at https://ecfsapi.fcc.gov/file/101220897228398/
SpaceX%208th%20Floor%20Ex%20Parte%20(01-22-2021).pdf; Amazon, Amazon Marks Breakthrough in Project 
Kuiper Development, December 16, 2020, available at https://www.aboutamazon.com/news/innovation-at-amazon/
amazon-marks-breakthrough-in-project-kuiper-development; Doug Mohney, SpaceX Gets Connected: Satellite 
Broadband Meets the Data Center, Data Center Frontier, February 23, 2021, available at 
https://datacenterfrontier.com/spacex-gets-connected-satellite-broadband-meets-the-data-center/; Telesat, 
Telefónica Puts Telesat’s Phase 1 LEO Satellite to the Test, June 4, 2020, available at https://www.telesat.com/press/
                                                 
41 Space Exploration Technologies Corporation, Order Starlink, available at https://www.starlink.com/. 
42 Adam Mann, Starlink: SpaceX’s Satellite Internet Project, Space.com, May 28, 2021, available at 
https://www.space.com/spacex-starlink-satellites.html. 
43 Federal Communications Commission, Order and Authorization, July 29, 2020, p. 2, available at 
https://docs.fcc.gov/public/attachments/FCC-20-102A1.pdf. 
44 Katherine Anne Long, Amazon Internet Program, Project Kuiper, to Launch Satellite, Government Technology, 
April 20, 2021, available at https://www.govtech.com/news/amazon-internet-program-project-kuiper-to-launch-
satellite.html. 
45 Rachel Jewett, FCC Grants OneWeb Market Access for 2,000-Satellite Constellation, Via Satellite, August 26, 2020, 
available at https://www.satellitetoday.com/broadband/2020/08/26/fcc-grants-oneweb-market-access-for-2000-satellite-
constellation/. 
46 Caleb Henry, Telesat Says Ideal LEO Constellation Is 292 Satellites, but Could Be 512, SpaceNews, September 11, 
2018, available at https://spacenews.com/telesat-says-ideal-leo-constellation-is-292-satellites-but-could-be-512/. 
47 Elisabeth Neasmith, Application for Modification of Market Access Authorization, Telesat, May 26, 2020, p. 5, 
available at https://fcc.report/IBFS/SAT-MPL-20200526-00053/2378318.pdf. 
Congressional Research Service  
 
8 
 link to page 12  link to page 12  link to page 16 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
press-releases/telefonica-puts-telesats-phase-1-leo-satellite-to-the-test/; Telesat, Lightspeed, available at 
https://www.telesat.com/wp-content/uploads/2020/08/Telesat-Lightspeed-Universal-Connectivity.pdf. 
At this point, it is not clear which of these companies, if any, might be able to achieve sustainable 
profitability. The number of successful competitors in the LEO broadband landscape may depend, 
in part, on factors such as U.S. and foreign regulations, federal subsidies, and development of 
standards through the International Telecommunication Union (ITU). Disagreements among 
satellite operators regarding issues such as spectrum or space traffic management may affect the 
competitive landscape.48 
The hardware needed for LEO satellite broadband may be expensive for consumers. For example, 
SpaceX charges $499 for the Starlink hardware49 and $99 a month for broadband service, plus 
shipping and handling and taxes.50 For comparison, Table 4 and Table 5 show equipment and 
service rates for other broadband technologies. 
Table 4. Estimated Average Monthly Prices for Fixed Broadband Services, 2020 
 
Estimated Average Monthly 
Broadband Technology 
Price  
Digital Subscriber Line (DSL) 
$50 
Cable Modem  
$52 
Fiber Optic Cable 
$59 
Satellite (GEO) 
$123 
Source: Allconnect, What Is the Average Internet Bill?, April 21, 2021, available at https://www.allconnect.com/
blog/cost-of-high-speed-internet. 
Notes: Excludes equipment rental and other fees.  
Table 5. Average Equipment Fees, 2019-2020 
Modem 
Wi-Fi Router 
Satellite Equipment 
Rental Fee 
Purchase Fee 
Rental Fee  
Purchase Fee 
Rental Fee 
Purchase Fee 
$9.86 
$126.81 
$6.13 
$0.00 
$9.99-$14.99 
$299.99-
$449.99 
Source: New America, The Cost of Connectivity 2020, available at https://www.newamerica.org/oti/reports/cost-
connectivity-2020/executive-summary; Dave Schafer, How Much Does Satellite Internet Cost?, SatelliteInternet, 
December 2, 2019, available at https://www.satelliteinternet.com/resources/how-much-does-satellite-internet-
cost/. 
Notes: Rental fees are per month.  
                                                 
48 David Jarvis, Five Key Uncertainties Around High-Speed Internet from Low Earth Orbit, International 
Telecommunication Union, August 18, 2020, available at https://www.itu.int/en/myitu/News/2020/08/18/07/51/
Uncertainties-high-speed-Internet-low-earth-orbit-LEO-satellite-broadband. See also “Evolving Regulatory Policies.” 
49 While the cost of each Starlink terminal is $499 for consumers, the cost to SpaceX is over $1,000. SpaceX has 
already cut the terminal cost in half from $3,000 and is aiming to reduce it to the few hundred dollar range within the 
next year or two. See Joey Roulette, Elon Musk Counts on 500,000 Starlink Users Within the Next Year, The Verge, 
June 29, 2021, available at https://www.theverge.com/2021/6/29/22556031/elon-musk-spacex-starlink-users-next-year-
telecom-5g. 
50 Ibid. 
Congressional Research Service  
 
9 
 link to page 14  link to page 14 Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Policy Issues for Congress 
Companies are in the process of developing, testing, and deploying LEO satellites with the hopes 
that these may provide higher speeds, lower latency, and expanded broadband coverage. As this 
progress continues, considerations for Congress may include:  
  the potential of LEO satellite broadband to narrow—or widen—the digital 
divide,  
  evolving regulatory policies, 
  reaching fiber-like speeds and other performance challenges, 
  competition, and 
  selected pilot programs. 
Potential to Narrow—or Widen—the Digital Divide 
In addressing the digital divide, existing federal broadband programs tend to encourage the 
deployment of technologies such as fiber, cable, or fixed wireless, though many programs allow 
GEO satellite broadband providers—and more recently, LEO satellite broadband providers—to 
apply for funding and compete at certain performance tiers, such as in the FCC’s Rural Digital 
Opportunity Fund (RDOF).51 With the advent of LEO satellites for broadband, it is unclear—due 
to unknown factors such as the ability to reach fiber-like speeds, what the competition landscape 
may look like, or if LEO satellite broadband service will be affordable—whether the inclusion of 
LEO satellite broadband providers would help address the digital divide through their 
participation in federal broadband programs. 
RDOF Performance Tiers 
Through RDOF, the FCC plans to commit $20.4 billion to bring high-speed fixed broadband 
service to rural homes and small businesses in two phases. The Phase I auction, which began on 
October 29, 2020, and ended on November 25, 2020, awarded support to bring broadband to over 
five million homes and businesses in census blocks that were entirely unserved by voice and 
broadband with download speeds of at least 25 Mbps.52 Broadband service providers had the 
option to bid at particular performance tiers (i.e., the speed and latency (high or low) they 
intended to deliver). See Table 6 and Table 7. 
                                                 
51 For more information on the RDOF, see CRS Report R46501, Rural Digital Opportunity Fund: Requirements and 
Selected Policy Issues, by Colby Leigh Rachfal.  
52 Federal Communications Commission, Auction 904: Rural Digital Opportunity Fund, https://www.fcc.gov/auction/
904. 
Congressional Research Service  
 
10 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Table 6. Service Tiers for RDOF Phase I Auction 
Performance Tier 
Speed 
Weight 
Minimum 
≥ 25/3 Mbps 
50 
Baseline 
≥ 50/5 Mbps 
35 
Above Baseline 
≥ 100/20 Mbps 
20 
Gigabit 
≥ 1 Gbps/500 Mbps 
0 
Source: Federal Communications Commission, Auction 904: Rural Digital Opportunity Fund, Fact Sheet, available at 
https://www.fcc.gov/auction/904/factsheet. 
Notes: Mbps means megabits per second. ≥ means greater than or equal to. 
Table 7. RDOF Latency Requirements 
Latency  
Requirement 
Weight 
Low Latency 
≤ 100 ms 
0 
High Latency 
≤ 750 ms and MOS of ≥4 
40 
Source: Federal Communications Commission, Auction 904: Rural Digital Opportunity Fund, Fact Sheet, available at 
https://www.fcc.gov/auction/904/factsheet. 
Notes: ms means mil iseconds. ≤ means less than or equal to. MOS means mean opinion score to predict voice 
over internet protocol (VoIP) call quality. 
Some broadband service providers bid at high performance tiers, e.g., gigabit or above baseline 
(≥ 100/20 Mbps), which would likely be delivered with a technology such as fiber optic cable. 
Other broadband service providers bid at other tiers, such as minimum (≥ 25/3 Mbps) or baseline 
(≥ 50/5 Mbps). Broadband service providers were encouraged to select performance tier and 
latency combinations that they could reasonably expect to meet and were required to make a 
certification that they are technically qualified to meet the obligations for each performance tier 
and latency combination.53 The FCC prioritized bids with lower tier and latency weights.54 
The tiered service level approach likely means that some communities will be served with 
broadband at very high speeds (e.g., gigabit) and low latencies, while other communities may be 
served with broadband at minimum (25/3 Mbps) or slightly higher speeds and higher latencies. 
The potential service level disparity may be attributable to some areas that may only receive 
lower tier bids while others receive bids at higher tiers, due to the economics of serving particular 
areas. For example, remote areas with difficult topography may receive lower service tier bids, 
while there may be competition among providers for higher service tier bids to potentially more 
profitable areas.  
It is unclear what impact LEO satellite broadband will have on broadband access in rural and 
tribal areas. The National Rural Electric Cooperative Association (NRECA) and National Rural 
Telecommunications Cooperative (NRTC) have expressed concerns about whether SpaceX—the 
                                                 
53 Federal Communications Commission, Rural Digital Opportunity Phase I Auction Notice and Filing Requirements 
and Other Procedures for Auction 904, June 11, 2020, p. 22-23, available at https://docs.fcc.gov/public/attachments/
FCC-20-77A1.pdf. 
54 Ibid., p. 71. 
Congressional Research Service  
 
11 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
only LEO satellite provider who qualified for and bid in the RDOF Auction—can consistently 
deliver at the performance tiers it bid for.55 As stated in a NRECA white paper: 
Questions  also  remain  about  the  ability  of  LEOs  to  consistently  provide  a  high  level  of 
speed  as  thousands  of  subscribers  sign  up  for  the  service.  Again,  if  this  service  were 
commercially available widely, real-world data would be available. But it is not.56 
SpaceX has a differing perspective on its technology, stating in a petition to the FCC: 
Starlink’s performance is not theoretical or experimental. Over 10,000 users in the United 
States and abroad are using the service today. While its performance is rapidly accelerating 
in real time as part of its public beta program, the Starlink network has already successfully 
demonstrated  it  can  surpass  the  Commission’s  “Above  Baseline”  and  “Low  Latency” 
performance tiers, including:  
  Meeting  and  exceeding  100/20  megabits  per  second  (“Mbps”)  throughput  to 
individual users,  
 Demonstrating performance of 95% of network round-trip latency measurements at 
or below 31 milliseconds, 
 Successfully testing standalone voice service over the Starlink network.57 
Nonduplication Policies and Competition 
In a January 2020 Report and Order, the FCC adopted a policy that made census blocks ineligible 
for the RDOF if they have been awarded funding through other, similar federal or state broadband 
subsidy programs.58 The FCC stated that the intent behind this policy is to ensure the auction does 
not award duplicative or unnecessary support, and instead targets RDOF funding in areas that 
would otherwise not be served by broadband. Other federal broadband programs have similar 
nonduplication policies. 
While these nonduplication policies seek to target federal dollars to areas that have the most need, 
they also mean that areas that receive satellite broadband funding from one federal program will 
likely become ineligible to receive future funding from other federal broadband programs. Those 
areas will therefore not have the opportunity for other broadband providers to participate in 
federal programs to build out terrestrial broadband technologies, such as fiber optic cable. 
Nonduplication policies may thus preclude an area from being served with multiple types of 
broadband service, which, in some cases, may be necessary or helpful to provide adequate access 
due to topography or the geographic distribution of potential users.  
Using the RDOF and the forthcoming 5G Fund for America59 as potential models, Congress may 
consider how LEO satellites could participate in national infrastructure investment programs and 
                                                 
55 SpaceX bid into the above baseline and low latency category.  
56 National Rural Electric Cooperative Association, The Rural Digital Opportunity Fund: Rural America’s Broadband 
Hopes at Risk, February 1, 2021, p. 10, available at https://ecfsapi.fcc.gov/file/10202734510982/
NRECA.NRTC.RDOF.paper%20PostFinal.02.01.2021.pdf. 
57 Edward Price, Petition of Starlink Services, LLC for Designation As An Eligible Telecommunications Carrier, Space 
Exploration Technologies Corporation, February 3, 2021, available at https://ecfsapi.fcc.gov/file/1020316268311/
Starlink%20Services%20LLC%20Application%20for%20ETC%20Designation.pdf. 
58 Federal Communications Commission, In the Matter of Rural Digital Opportunity Fund Report and Order, January 
30, 2020, p. 7, available at https://docs.fcc.gov/public/attachments/FCC-20-5A1.pdf. 
59 For the FCC’s forthcoming 5G Fund for Rural America (5G Fund)—a program which is to make $9 billion available 
to bring 5G mobile broadband service to rural areas—satellite providers who can deliver service with a latency of 100 
milliseconds or less will be eligible to receive funding. See Federal Communications Commission, Report and Order, 
Congressional Research Service  
 
12 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
other federal initiatives to close the digital divide. For example, Congress may examine how LEO 
satellites could be included in any infrastructure, incentive, or tax policy legislation undertaken to 
expand broadband access in the United States.60 Subsidizing the deployment of LEO satellite 
broadband may help to narrow the digital divide in some communities that are currently unserved 
or underserved by terrestrial broadband. At the same time, nonduplication policies may 
potentially inhibit the provision of multiple types of broadband service in some communities 
where a mix of technologies would increase access, or make some communities ineligible for 
future federal broadband programs, in which case it might even widen the digital divide in those 
locations.61 
Evolving Regulatory Policies62 
Radio spectrum is used by wireless technologies to transmit data, and spectrum demands have 
increased in recent years with the emergence of, and consumer demand for, new wireless 
technologies and services. Many of these new services are data intensive, such as streaming video 
and access to cloud storage, and, since wireless technologies are typically limited to specific 
frequency bands, there is intense demand for spectrum to support them.63 
As satellites use specific segments or “bands” of spectrum—radio frequencies used to transmit 
signals wirelessly from one facility or device to another64—use of radio frequencies65 is regulated 
to avoid interference between users. As the deployment of LEO satellites accelerates, regulations 
around deployment rate, frequency allocation, and orbital debris mitigation may continue to 
evolve. There may be disagreements among satellite operators, as well as challenges with 
regulatory bodies in different countries regarding standards setting and spectrum coordination, 
affecting the competitive landscape.66 Congress may consider ways to encourage coordination 
among agencies that have jurisdiction over space and spectrum.  
Limited Spectrum and Potential Interference Issues  
While spectrum rights are not exclusive to any one company, once certain spectrum bands are in 
use, any new users must design their systems to avoid interference with existing operators.67 
                                                 
October 27, 2020, p. 10, available at https://docs.fcc.gov/public/attachments/FCC-20-150A1.pdf. 
60 See, for example, U.S. Congress, Senate Committee on Commerce, Science, and Technology, Statement of Patricia 
Cooper, Vice President, Satellite Government Affairs, Space Exploration Technologies Corporation, 115th Cong., May 
2017, pp. 7-8, available at https://www.commerce.senate.gov/services/files/6c08b6c2-fe74-4500-ae1d-a801f53fd279. 
61 Katie Kienbaum, Satellite Subsidies Will Widen Digital Divide in Rural America, Community Networks, January 14, 
2020, available at https://muninetworks.org/content/satellite-subsidies-will-widen-digital-divide-rural-america. 
62 For more information, see CRS In Focus IF11382, Small Satellite Boom Poses Challenges for Regulators, by Alyssa 
K. King.  
63 For example, in the United States and in South Korea, it has already been decided that the 28 GHz band, located in 
the Ka band, will be devoted to 5G. For more information, see European Commission, Low-Earth Orbit Satellites: 
Spectrum Access, July 2017, p. 5, available at https://ati.ec.europa.eu/sites/default/files/2020-06/Low-
Earth%20Orbit%20satellites%20-%20Spectrum%20access%20%28v1_0%29.pdf. 
64 Riley Davis, What Is Spectrum? A Brief Explainer, CTIA, June 5, 2018, available at https://www.ctia.org/news/what-
is-spectrum-a-brief-explainer. 
65 Radio spectrum is the range of radio frequencies that are used for communicating. 
66 David Jarvis, Five Key Uncertainties Around High-Speed Internet from Low Earth Orbit, International 
Telecommunication Union, August 18, 2020, available at https://www.itu.int/en/myitu/News/2020/08/18/07/51/
Uncertainties-high-speed-Internet-low-earth-orbit-LEO-satellite-broadband. 
67 Sissi Cao, SpaceX Expands Starlink Project to 42,000 Satellites, ‘Drowns’ ITU in Filing Paper, Observer, October 
Congressional Research Service  
 
13 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Early in the planning process, companies apply for and obtain licenses from their national 
regulators (e.g., the FCC in the United States) and a general description of the satellite 
constellation is filed with the ITU, including the frequencies it will use. A company is required to 
coordinate with any satellite system that might be affected by its planned constellation, provided 
the other system was filed before its filing; there is no requirement to coordinate with those 
whose filings are made after its own filing.68  
This could potentially lead broadband satellite providers entering the market to encounter 
increasingly crowded airwaves, as dedicated bands and interference avoidance practices makes 
spectrum a limited resource. For example, in January 2021, SpaceX asked the FCC for 
permission to operate Starlink communications satellites at a lower orbit than first planned, and 
Amazon responded that the move would risk interference (and collisions) with its planned Project 
Kuiper satellites.69 On January 20-22, 2021, SpaceX discussed with the FCC a proposal to lower 
the operating altitudes of some of its satellites.70 In a statement to CNBC, an Amazon 
spokesperson said: 
The facts are simple. We designed the Kuiper System to avoid interference with Starlink, 
and now SpaceX wants to change the design of its system. Those changes not only create 
a  more  dangerous  environment  for  collisions  in  space,  but  they  also  increase  radio 
interference for customers. Despite what SpaceX posts on Twitter, it is SpaceX’s proposed 
changes  that  would  hamstring  competition  among  satellite  systems.  It  is  clearly 
in SpaceX’s interest to smother competition in the cradle if they can, but it is certainly not 
in the public’s interest.71 
SpaceX Chief Executive Officer Elon Musk responded in a tweet on January 26, 2021, “It does 
not serve the public to hamstring Starlink today for an Amazon satellite system that is at best 
several years away from operation.”72 
The FCC has acknowledged potential challenges surrounding its spectrum administration 
policies. In a commentary for the Orlando Sentinel, FCC Commissioner Geoffrey Starks stated: 
The FCC’s stewardship of the public airwaves is one tool the agency can use to promote 
the delivery of communications services to all Americans. The coming satellite broadband 
surge  challenges  us  to  rethink  our  policies.  In  August,  the  Commission  will  consider 
streamlining the process for applications involving small satellites in low-Earth orbit. We 
should take a similar look at our processes for innovative satellite broadband operations to 
determine  how  they  promote  service  to  rural  America.  We  must  adopt  policies  that 
encourage investment in new networks and leave room for new competitive players and 
new services.73 
                                                 
21, 2019, available at https://observer.com/2019/10/spacex-elon-musk-starlink-satellite-internet-itu-fcc-filing/. 
68 Aaron C. Boley and Michael Byers, Satellite Mega-Constellations Create Risks in Low Earth Orbit, the Atmosphere 
and on Earth, Scientific Reports, May 20, 2021, available at https://www.nature.com/articles/s41598-021-89909-7. 
69 Todd Shields, World’s Richest Men, Musk and Bezos, Fight over Satellite Fleets, Financial Post, January 26, 2021, 
available at https://financialpost.com/pmn/business-pmn/worlds-richest-men-musk-and-bezos-fight-over-satellite-
fleets. 
70 David Goldman, Space Exploration Technologies Corporation, January 22, 2021, available at https://ecfsapi.fcc.gov/
file/101220897228398/SpaceX%208th%20Floor%20Ex%20Parte%20(01-22-2021).pdf. 
71 Michael Sheetz, Elon Musk Blasts Jeff Bezos’ Amazon, Alleging Effort to ‘Hamstring’ SpaceX’s Starlink Satellite 
Internet, CNBC, January 26, 2021, available at https://www.cnbc.com/2021/01/26/elon-musk-blasts-jeff-bezos-
amazon-competitor-to-spacexs-starlink-.html. 
72 Twitter, January 26, 2021, available at https://twitter.com/elonmusk/status/1354018055014260738. 
73 Geoffrey Starks, Can Satellite Broadband Solve Rural Internet Inequality?, Orlando Sentinel, July 25, 2019, 
Congressional Research Service  
 
14 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
While taking steps toward improving regulatory policies may prove useful for LEO satellite 
deployments in the long term, disagreements between satellite broadband providers may stifle 
competition by discouraging new providers from entering the market or delaying launches, and 
thus delay the deployment of broadband to consumers. Congress may consider providing 
oversight on these matters and to ensure any disputes are resolved expeditiously.  
Orbital Debris and Space Traffic Management 
Along with the potential for radio interference, the growing number of satellites in space has 
raised concerns with the FCC about orbital congestion and the threat of orbital debris, also known 
as “space junk.”74 Avoiding collision with other operating satellites and with debris objects is a 
serious concern as LEO satellites travel at thousands of miles per hour and in-orbit collisions can 
cause significant to fatal damage to hardware and service. There are millions of pieces of space 
junk flying in LEO. Most orbital debris comprises human-generated objects, such as pieces of 
spacecraft, tiny flecks of paint from a spacecraft, parts of rockets, satellites that are no longer 
working, or explosions of objects in orbit flying around in space at high speeds.75 
Understanding where objects are (and will be) in space, sharing that information so that satellite 
operators can avoid collisions, and establishing the “rules of the road” among the community of 
space users is called space traffic management.76 The Department of Defense has historically 
provided the global community with satellite and debris location information. The Obama 
Administration indicated that it wanted to assign it to the Federal Aviation Administration in the 
Department of Transportation; it was not done by the end of Obama’s presidency.77 In 2018, the 
Trump Administration issued Space Policy Directive 3, transferring responsibility for improving 
space situational awareness and coordinating space traffic management activities to the 
Department of Commerce.78  
To determine which federal agency might be best suited to be the lead on space traffic 
management, Congress asked the National Academy of Public Administration (NAPA) for an 
independent assessment.79 Released in August 2020, the resulting NAPA report concluded that the 
Department of Commerce Office of Space Commerce is best suited to perform non-military space 
situational awareness and space traffic management tasks.80 Many policymakers continue to 
                                                 
available at https://www.orlandosentinel.com/opinion/guest-commentary/os-op-broadband-internet-20190725-
xdqcejglzvcoflsfja5ii7jz34-story.html. 
74 See Federal Communications Commission, “Mitigation of Orbital Debris in the New Space Age,” 85 Federal 
Register 52422 Federal Register, August 25, 2020, available at https://www.federalregister.gov/documents/2020/08/25/
2020-13185/mitigation-of-orbital-debris-in-the-new-space-age.  
75 National Aeronautics and Space Administration, Space Debris, available at https://www.nasa.gov/centers/hq/library/
find/bibliographies/space_debris. 
76 Michael Dominguez, Martin Faga, and Jane Fountain, et al., Managing Space Traffic in an Increasingly Congested 
Orbit, Government Executive, August 20, 2020, available at https://www.govexec.com/management/2020/08/
managing-space-traffic-increasingly-congested-orbit/167875/. 
77 Spacepolicyonline.com, Senate Committee Approves Space Act, but Without a Bureau of Space Commerce, 
November 18, 2020, available at https://spacepolicyonline.com/news/senate-committee-approves-space-act-but-
without-a-bureau-of-space-commerce/. 
78 White House, Space Policy Directive-3, National Space Traffic Management Policy, Presidential Memoranda, June 
18, 2018, available at https://trumpwhitehouse.archives.gov/presidential-actions/space-policy-directive-3-national-
space-traffic-management-policy/. 
79 S.Rept. 116-127, accompanying the Departments of Commerce and Justice, Science, and Related Agencies 
Appropriations Act, 2020 (S. 2584), p. 67. 
80 National Academy of Public Administration, Space Traffic Management, August 2020, p. 19, available at 
Congressional Research Service  
 
15 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
disagree on this point, however, and that lack of consensus has slowed progress on making a 
determination on which federal agency should be the lead.81  
There is sustained congressional interest in space traffic management. For example, the Senate 
Commerce Subcommittee on Space and Science held a hearing on July 22, 2021, on space traffic 
management82 and on May 12, 2021, the Space Preservation and Conjunction Emergency 
(SPACE) Act of 2021 was approved by the Senate Commerce, Science, and Transportation 
Committee as an amendment to the United States Innovation and Competition Act of 2021 (S. 
1260).83 In addition to the potential for additional hearings and consideration of legislation to 
determine space traffic management roles and responsibilities, some have suggested that 
Congress consider coordinated and sustained funding for space traffic management innovation.84 
Reaching Fiber-like Speeds and Capacity Challenges  
For rural or remote areas that have little or no access to terrestrial broadband, satellite broadband 
may be a viable option. GEO satellite broadband speeds do not reach the same maximum speeds 
achieved by fiber optic cable or cable modem (often up to gigabits per second, or Gbps), and it is 
currently unclear whether LEO satellite broadband will be able to in the future. SpaceX has stated 
it plans to deliver 10 Gbps service in the future.85 If it or any other LEO satellite broadband 
provider were to achieve such speeds, they would be faster than fiber speeds currently offered to 
residential customers by broadband providers such as AT&T, Verizon, or Xfinity.86 
Even if LEO satellite broadband speeds are as fast—or faster—than fiber, LEO satellite 
broadband may be more of a complementary than competitive technology. Elon Musk, SpaceX’s 
Chief Executive Officer, has stated: 
I want to be clear, it’s not like Starlink is some huge threat to telecos. I want to be super 
clear. It is not. In fact, it will be helpful to telecos because Starlink will serve the hardest-
to-serve customers that telecos otherwise have trouble doing with landlines or even with ... 
cell towers.87 
                                                 
https://napawash.org/uploads/NAPA_OSC_Final_Report.pdf. 
81 Jeff Foust, Space Traffic Management Idling in First Gear, SpaceNews, November 3, 2020, available at 
https://spacenews.com/space-traffic-management-idling-in-first-gear/. 
82 U.S. Senate Committee on Commerce, Science, and Transportation, Space Situational Awareness, Space Traffic 
Management, and Orbital Debris: Examining Solutions for Emerging Threats, hearing, July 22, 2021, available at 
https://www.commerce.senate.gov/2021/7/space-situational-awareness-space-traffic-management-and-orbital-debris-
examining-solutions-for-emerging-threats/819ef822-3e6d-4ab1-9a56-31c6d60969c9. 
83 The SPACE Act of 2021 is included in the June 8, 2021, Senate-passed version of the United States Innovation and 
Competition Act of 2021 (S. 1260). 
84 Written testimony of Dr. Marcus J. Holzinger, Hearing on Space Situational Awareness, Space Traffic Management, 
and Orbital Debris: Examining Solutions for Emerging Threats, U.S. Senate Committee on Commerce, Science, and 
Transportation, Subcommittee on Science and Space, July 22, 2021, p. 2, available at 
https://www.commerce.senate.gov/services/files/244B2DC1-0FEB-4DE4-AF25-53EFBF2E376A. 
85 David Goldman, Re: IBFS File No. SAT-MOD-20200417-00037; RM-11855, Space Exploration Technologies 
Corporation, January 22, 2021, p. 4, available at https://ecfsapi.fcc.gov/file/101220897228398/
SpaceX%208th%20Floor%20Ex%20Parte%20(01-22-2021).pdf. 
86 Angelo Ilumba, Fastest Internet Providers, WhistleOut, April 16, 2020, available at https://www.whistleout.com/
Internet/Guides/fastest-internet-providers. 
87 YouTube, Elon Musk, Founder and Chief Engineer, SpaceX—SATELLITE 2020 Opening Day Keynote, Washington, 
DC, March 9, 2020, available at https://www.youtube.com/watch?v=HPV8Xp3pEpI. 
Congressional Research Service  
 
16 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Given the growing demand for bandwidth driven by higher speeds and multiple devices per 
household, the main uncertainty around Starlink today is capacity, and how this capacity will 
affect availability, speeds, prices, and data caps. Slots to receive initial beta Starlink service are 
limited in each geographic region because of capacity limits. As of August 2021, SpaceX said it 
had shipped 100,000 terminals to customers and received over half a million additional orders for 
the service.88 Musk said that SpaceX will face a challenge if it gets millions of orders.89  
Even with many more satellites deployed, the capacity of each satellite is limited, and a finite 
number of satellites are expected to be overhead at any given time. In low-density areas this 
capacity limitation may not be a significant issue, since the total number of users on visible 
satellites will be low. For denser areas, the capacity of visible satellites could be saturated and 
may result in Starlink having to do one or more of the following: (1) raise prices to decrease 
demand, (2) limit availability, (3) lower speeds, (4) implement data caps, or (5) allow over-
saturation, resulting in degraded service to some subscribers.90  
Competition 
In some locations where existing broadband options are expensive, new LEO satellite broadband 
market entrants could potentially provide competitively priced broadband services, increasing 
consumer choice and competition. For example, analysis of BroadbandNow U.S. market pricing 
data suggests that LEO satellite technology could save American households more than $30 
billion per year by intensifying broadband competition in places with other providers.91 When a 
new competitor, such as a LEO provider, enters an area, existing providers, with large capital 
costs already invested, may lower prices, provide other incentives, and invest in marketing in an 
attempt to retain customers.92 
On the other hand, if a currently unserved area becomes served by only a single LEO satellite 
broadband provider, the absence of other broadband providers may lead to expensive broadband, 
leaving some consumers unable to connect despite availability due to cost concerns. Further, if 
LEO satellite companies are not able to generate sufficient revenue, or if LEO satellites fail at 
faster rates than anticipated, the result might be a descaling of investments, leading to 
connectivity and capacity issues.93  
                                                 
88 Aria Alamalhodaei, SpaceX Ships 100,000 Starlink Terminals to Customers, Eyes Future Launches Using Starship, 
TechCrunch, August 23, 2021, available at https://techcrunch.com/2021/08/23/spacex-ships-100000-starlink-terminals-
to-customers-eyes-future-launches-using-starship/. 
89 Jon Brodkin, Starlink Can Serve 500,000 Users Easily, Several Million “More of a Challenge,” Arstechnica, May 5, 
2021, available at https://arstechnica.com/information-technology/2021/05/spacex-gets-500000-starlink-pre-orders-
musk-says-it-can-meet-demand/. 
90 Ben Fineman, Starlink Summary: February 2021, Michigan Broadband Alliance, p. 1, available at 
https://www.washtenaw.org/DocumentCenter/View/19599/Starlink-Summary-Feb-2021. 
91 Julia Tanberk, Elon Musk and Jeff Bezos Can Save American Households $30+ Billion with LEO Satellites, 
BroadbandNow, April 7, 2021, available at https://broadbandnow.com/research/leo-satellite-internet-consumer-
savings-study. 
92 Chris Daehnick, Isabel Klinghoffer, and Ben Maritz, et al., Large LEO Satellite Constellations: Will It Be Different 
This Time?, McKinsey & Company, May 4, 2020, available at https://www.mckinsey.com/industries/aerospace-and-
defense/our-insights/large-leo-satellite-constellations-will-it-be-different-this-time. 
93 Jeffrey Hill, The FCC’s Path to a U.S. Nationwide 5G Rollout Gets Lost in the Thick of Rural America, Via Satellite, 
available at http://interactive.satellitetoday.com/via/february-2021/the-fccs-path-to-a-u-s-nationwide-5g-rollout-gets-
lost-in-the-thick-of-rural-america/. 
Congressional Research Service  
 
17 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
Selected Pilot Programs 
Some pilot programs already underway may help analysts and policymakers evaluate how LEO 
satellite broadband might actually affect the digital divide. Among these pilot programs are 
examples in North Carolina and Texas. 
On March 4, 2021, the office of North Carolina Governor Roy Cooper announced in a press 
release that school districts in Hyde and Swain counties would be implementing the “Satellite 
Internet Technologies for Student Connectivity Pilot,” which is to allow students to access 
SpaceX Starlink service. According to the press release:  
“This pilot with SpaceX has the potential to help students on Ocracoke Island and in Swain 
Counties who, because of geographic barriers, have been unable to connect to high-speed 
internet and effectively participate in remote learning,” Jeff Sural, BIO Director, said. “We 
are looking forward to testing this emerging technology and evaluating its effectiveness for 
our residents.”94 
On October 20, 2020, Ector County Independent School District (ECISD), a public school district 
based in Odessa, TX, announced in a press release that it would be the first school district in the 
United States to work with SpaceX and its Starlink satellite constellation to deliver high-speed, 
low-latency internet access for ECISD students. According to the press release:  
When COVID-19 forced the closure of school buildings last spring, it really brought to the 
forefront just how large the digital divide is in Ector County. As ECISD leaders dove into 
surveys of teachers, students and families, they found some 39% of families have limited 
to no Internet access.95 
LEO satellite pilots could hold promise for connecting students to broadband. As the technology 
is largely still in the testing and development phases, the effectiveness and success of these pilots 
is likely to warrant evaluation before implementation on a larger scale. Congress may opt to 
consider potential inclusion in federal broadband programs, such as the FCC’s schools and 
libraries universal service support program—known as the E-rate program—which helps schools 
and libraries obtain affordable broadband.96 
Addressing the Digital Divide: What Happens Next? 
If LEO satellites can provide fiber-like speeds and low latency to remote rural and tribal areas 
where there are no physical impediments to access, Congress may consider how to best foster 
access to terrestrial and space-based broadband service for all users. In a January 2017 white 
paper on improving the nation’s digital infrastructure, the FCC stated, “The primary goal of 
federal actions with respect to digital infrastructure should be to increase and accelerate 
profitable, incremental, private-sector investment to achieve at least 98% nationwide deployment 
of future-proofed, fixed broadband networks.”97 In the white paper, the FCC estimated that the 
                                                 
94 NC.gov, New Satellite Internet Pilot Program to Connect Students in Two N.C. Counties, March 4, 2021, available at 
https://governor.nc.gov/news/new-satellite-internet-pilot-program-connect-students-two-nc-counties. 
95 Ector County Independent School District, ECISD Becomes First School District to Utilize SpaceX Satellites to 
Provide Internet for Students, October 20, 2020, available at https://www.ectorcountyisd.org/cms/lib/TX50000506/
Centricity/ModuleInstance/51/
ECISD%20partnership%20to%20bring%20SpaceX%20satellite%20Internet%20to%20students.pdf. 
96 For more information on the E-rate program, see Federal Communications Commission, E-Rate—Schools and 
Libraries USF Program, available at https://www.fcc.gov/general/e-rate-schools-libraries-usf-program. 
97 Federal Communications Commission, Improving the Nation’s Digital Infrastructure, January 19, 2017, p. 2, 
Congressional Research Service  
 
18 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
total upfront capital expenditures required to deploy fiber to the premises98 in the 14% of 
locations lacking access would be approximately $80 billion, and 98% coverage could be attained 
for $40 billion.99 Recent Administration and congressional proposals seek to address this. The 
Biden Administration’s American Jobs Plan seeks to bring affordable, reliable, high-speed 
broadband to every American through an investment of $100 billion, including building high-
speed broadband infrastructure to reach 100% coverage.100 Bills introduced in the 117th Congress 
would provide funding to address the buildout of infrastructure. For example:  
  The Leading Infrastructure For Tomorrow’s America Act (H.R. 1848) would 
provide $80 billion for the deployment of secure and resilient high-speed 
broadband to expand access nationwide.101  
  The Accessible, Affordable Internet for All Act (H.R. 1783/S. 745) would 
provide over $94 billion to build high-speed broadband infrastructure in unserved 
and underserved communities.102 
Installing fiber networks is expensive, and though this funding would help to further build out 
broadband infrastructure, whether it would be enough funding, or whether it is possible to 
connect every American—especially in areas that have difficult terrain or geographic 
restrictions—remains an open question. Congress may consider ways that satellite and terrestrial 
broadband can complement each other in order to increase coverage and create competition, 
which, in turn, may also help to address affordability issues.  
Broadband Adoption 
While broadband infrastructure addresses a large component of the digital divide by increasing 
availability, there are additional geographic, social, and economic factors that affect broadband—
for example, affordability and adoption rates. While broadband accessibility across the United 
States—especially in rural and tribal areas—has been a continuing challenge, barriers to 
broadband adoption, even where service is available, remain. Broadband adoption can be defined 
as residential subscribership to high-speed internet access.103 Barriers that may prevent consumers 
from adopting broadband include the affordability of service, and unfamiliarity with digital 
devices and the services they support. 
                                                 
available at https://www.fcc.gov/document/improving-nations-digital-infrastructure. 
98 Fiber to the Premises is a form of fiber optic communication delivery in which an optical fiber is run directly onto 
customers’ premises. For more information, see Christina Hansen, Understanding Fiber to the Premises (FTTP), 
CableOrganizer, available at https://www.cableorganizer.com/learning-center/articles/fiber-optics-tutorial/
understanding-fttp.html. 
99 Ibid. 
100 The White House, FACT SHEET: The American Jobs Plan, March 31, 2021, available at 
https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/31/fact-sheet-the-american-jobs-plan/. 
101 House Committee on Energy and Commerce, E&C Democrats Introduce LIFT AMERICA Act That Invests in Clean 
Energy, Broadband & Public Health Infrastructure, March 11, 2021, available at https://energycommerce.house.gov/
newsroom/press-releases/ec-democrats-introduce-lift-america-act-that-invests-in-clean-energy. 
102 Senator Amy Klobuchar, “Klobuchar, Clyburn Introduce Comprehensive Broadband Infrastructure Legislation to 
Expand Access to Affordable High-Speed Internet,” March 11, 2021, available at https://www.klobuchar.senate.gov/
public/index.cfm/2021/3/klobuchar-clyburn-introduce-comprehensive-broadband-infrastructure-legislation-to-expand-
access-to-affordable-high-speed-internet. 
103 Colin Rhinesmith, Ph.D, Digital Inclusion and Meaningful Broadband Adoption Initiatives, Benton Foundation, 
Evanston, IL, January 2016, p. 8, https://www.benton.org/sites/default/files/broadbandinclusion.pdf. 
Congressional Research Service  
 
19 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
The price of commercial home broadband service is among the most significant barriers to 
broadband adoption—especially for lower income consumers, who are far less likely to have 
home internet subscriptions than their middle- and upper-income neighbors (including in urban 
and suburban areas as well as in under-connected rural and tribal areas).104 The FCC’s Lifeline 
and temporary Emergency Broadband Benefit (EBB) Programs address broadband affordability. 
Congress may consider making the EBB program permanent, or create additional federal 
programs that address broadband affordability. Additionally, incorporating price and adoption 
data into broadband mapping—overlaying the data with the current FCC data on broadband 
availability to identify existing service gaps and adoption trends across the United States—may 
help the FCC, RUS, and NTIA better target programs designed to address the digital divide. 
Concluding Observations 
Broadband availability is unevenly distributed throughout the United States. During the COVID-
19 pandemic, broadband has been used for some aspects of daily life, such as remote work or 
schooling. Congress has shown an interest in ensuring that all citizens have access to broadband 
with the enactment of the Coronavirus Aid, Relief, and Economic Security Act (P.L. 116-136), the 
Consolidated Appropriations Act, 2021 (P.L. 116-260), and the American Rescue Plan Act of 
2021 (P.L. 117-2), each of which contains provisions for broadband. 
There are numerous federal broadband programs that attempt to address the digital divide and 
there are a number of technologies that may help expand access—however, there are still 
geographic and economic challenges to closing the digital divide. One potential option to provide 
broadband service in those remote areas is through LEO satellite broadband. As an emerging 
industry, dynamics that will affect affordability and adoption—technology development, sectoral 
competition, spectrum availability, and regulation—are still in flux. Congress may assess the 
potential impact of funding satellite broadband on federal broadband programs, whether LEO 
satellites appear to have the potential to close or widen the digital divide, and whether legislation 
is needed to address regulatory challenges. 
 
 
Author Information 
 
Colby Leigh Rachfal 
   
Analyst in Telecommunications Policy 
    
                                                 
104 National Digital Inclusion Alliance, Policy, available at https://www.digitalinclusion.org/policy/. 
Congressional Research Service  
 
20 
Low Earth Orbit Satellites: Potential to Address the Broadband Digital Divide 
 
 
 
Disclaimer 
This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan 
shared staff to congressional committees and Members of Congress. It operates solely at the behest of and 
under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other 
than public understanding of information that has been provided by CRS to Members of Congress in 
connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not 
subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in 
its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or 
material from a third party, you may need to obtain the permission of the copyright holder if you wish to 
copy or otherwise use copyrighted material. 
 
Congressional Research Service  
R46896 · VERSION 1 · NEW 
21