

Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

(name redacted)
Specialist in Naval Affairs

April 27, 2018

Congressional Research Service

7-.... www.crs.gov RL33745

Summary

The Aegis ballistic missile defense (BMD) program, which is carried out by the Missile Defense Agency (MDA) and the Navy, gives Navy Aegis cruisers and destroyers a capability for conducting BMD operations. Under the FY2019 budget submission, the number of BMD-capable Aegis ships is scheduled to be 41 at the end of FY2019 and 57 at the end of FY2023.

Two Japan-homeported Navy BMD-capable Aegis destroyers included in the above figures—the *Fitzgerald* (DDG-62) and the *John S McCain* (DDG-56)—were seriously damaged in collisions with merchant ships in waters off the coasts of Japan and Singapore in June 2017 and August 2017, respectively, and are currently being repaired. The temporary loss of these two BMD-capable ships reinforced, at the margin, concerns among some observers about required numbers of BMD-capable Aegis ships versus available numbers of BMD-capable Aegis ships, particularly for performing BMD operations in the Western Pacific.

Under the European Phased Adaptive Approach (EPAA) for European BMD operations, BMD-capable Aegis ships are operating in European waters to defend Europe from potential ballistic missile attacks from countries such as Iran. BMD-capable Aegis ships also operate in the Western Pacific and the Persian Gulf to provide regional defense against potential ballistic missile attacks from countries such as North Korea and Iran.

The Aegis BMD program is funded mostly through MDA's budget. The Navy's budget provides additional funding for BMD-related efforts. MDA's proposed FY2019 budget requests a total of \$1,711.8 million in procurement and research and development funding for Aegis BMD efforts, including funding for two Aegis Ashore sites in Poland and Romania that are to be part of the EPAA. MDA's budget also includes operations and maintenance (O&M) and military construction (MilCon) funding for the Aegis BMD program.

Issues for Congress regarding the Aegis BMD program include the following:

- whether to approve, reject, or modify MDA's FY2019 funding procurement and research and development funding requests for the program;
- required numbers of BMD-capable Aegis ships versus available numbers of BMD-capable Aegis ships;
- burden sharing—how European naval contributions to European BMD capabilities and operations compare to U.S. naval contributions to European BMD capabilities and operations;
- the potential for ship-based lasers, electromagnetic railguns (EMRGs), and hypervelocity projectiles (HVPs) to contribute in coming years to Navy terminalphase BMD operations and the impact this might eventually have on required numbers of ship-based BMD interceptor missiles; and
- technical risk and test and evaluation issues in the Aegis BMD program.

Contents

Introduction	1
Background	1
Aegis Ships	1
Ticonderoga (CG-47) Class Aegis Cruisers	1
Arleigh Burke (DDG-51) Class Aegis Destroyers	
Aegis Ships in Allied Navies	
Aegis BMD System	2
Versions of Aegis BMD System	3
Aegis BMD Interceptor Missiles	
European Phased Adaptive Approach (EPAA) for European BMD	5
Numbers of BMD-Capable Aegis Ships and SM-3 Interceptors	
Homeporting of BMD-Capable DDG-51s in Spain	7
Aegis BMD Flight Tests	7
Allied Participation and Interest in Aegis BMD Program	8
Japan	8
Other Countries	
FY2019 MDA Funding Request	10
Issues for Congress	11
FY19 Funding Request	11
Required vs. Available Numbers of BMD-Capable Aegis Ships	
Overview	
BMD-Capable Destroyers Fitzgerald and John S McCain Seriously Damaged	
Burden Sharing: U.S. vs. European Naval Contributions to European BMD	
Potential Future BMD Contribution from Lasers, Railguns, and Hypervelocity	
Projectiles	14
Technical Risk and Test and Evaluation Issues	
January 2018 DOT&E Report	
May 2017 GAO Report	
Legislative Activity for FY2019	
Summary of Action on FY2019 MDA Funding Request	
•	
Legislative Activity for FY2018	
Summary of Action on FY2018 MDA Funding Request	
FY2018 National Defense Authorization Act (H.R. 2810/S. 1519 /P.L. 115-91)	
House Committee Report	
House Floor Action	
Senate Committee Report	
Senate Floor Action	
Conference	27
DOD Missile Defeat and Defense Enhancements Appropriations Act, 2018 (Division	
B of H.R. 1370/P.L. 115-96)	28
As Enacted	28
FY2018 DOD Appropriations Act (Division A of H.R. 3219/S. XXXX/Division C of	20
H.R. 1625/P.L. 115-141)	
House	
Senate	
Conference	31

Figures	
Figure 1. Aegis BMD System Variants	4
Tables	
Table 1. Numbers of BMD-Capable Aegis Ships and SM-3 Missiles Under FY2019 Budget Submission	6
Table 2. MDA Funding for Aegis BMD Efforts, FY2019-FY2023	
Table 3. Summary of Congressional Action on FY2019 Request for MDA Procurement and RDT&E Funding for Aegis BMD Program	23
Table 4. Summary of Congressional Action on FY2018 Request for MDA Procurement and RDT&E Funding for Aegis BMD Program	24
Table A-1. Aegis BMD Flight Tests From January 2002 to the Present	34
Appendixes	
Appendix A. Aegis BMD Flight Tests	33
Appendix B. Homeporting of U.S. Navy Aegis BMD Ships at Rota, Spain	
Appendix C. Allied Participation and Interest in Aegis BMD Program	
Appendix D. Target for Simulating Endo-Atmospheric Flight of DF-21 ASBM	68
Contacts	
Author Contact Information	60

Introduction

This report provides background information and issues for Congress on the Aegis ballistic missile defense (BMD) program, which is carried out by the Missile Defense Agency (MDA) and the Navy, and gives Navy Aegis cruisers and destroyers a capability for conducting BMD operations. The issue for Congress is whether to approve, reject, or modify Department of Defense (DOD) acquisition strategies and proposed funding levels for the Aegis BMD program. Congress's decisions on the Aegis BMD program could significantly affect U.S. BMD capabilities and funding requirements, and the BMD-related industrial base.

For an overview of the strategic and budgetary context in which the Aegis BMD program may be considered, see CRS Report RL32665, *Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress*, by (name redacted).

Background

Aegis Ships

The Navy's cruisers and destroyers are called Aegis ships because they are equipped with the Aegis ship combat system—an integrated collection of sensors, computers, software, displays, weapon launchers, and weapons named for the mythological shield that defended Zeus. The Aegis system was originally developed in the 1970s for defending ships against aircraft, anti-ship cruise missiles (ASCMs), surface threats, and subsurface threats. The system was first deployed by the Navy in 1983, and it has been updated many times since. The Navy's Aegis ships include Ticonderoga (CG-47) class cruisers and Arleigh Burke (DDG-51) class destroyers.

Ticonderoga (CG-47) Class Aegis Cruisers

Overview

A total of 27 CG-47s (CGs 47 through 73) were procured for the Navy between FY1978 and FY1988; the ships entered service between 1983 and 1994. The first five ships in the class (CGs 47 through 51), which were built to an earlier technical standard in certain respects, were judged by the Navy to be too expensive to modernize and were removed from service in 2004-2005, leaving 22 ships in operation (CGs 52 through 73).

"2-4-6" Program for Modernizing 11 Existing Aegis Cruisers

Congress has directed the Navy to implement the so-called "2-4-6" program for modernizing the 11 youngest Aegis cruisers. Under the 2-4-6 program, no more than two of the cruisers are to enter the modernization program each year, none of the cruisers is to remain in reduced status for modernization for more than four years, and no more than six of the cruisers are to be in the program at any given time. Among the 11 Aegis cruisers that are to be modernized under this program are four that are BMD-capable—CG-67 (*Shiloh*), CG-70 (*Lake Erie*), CG-72 (*Vella Gulf*), and CG-73 (*Port Royal*).

Arleigh Burke (DDG-51) Class Aegis Destroyers¹

Flight I/II and Flight IIA DDG-51s Procured in FY1985-FY2005

A total of 62 DDG-51s were procured for the Navy between FY1985 and FY2005; the first entered service in 1991 and the 62nd entered service in FY2012. The first 28 ships are known as Flight I/II DDG-51s. The next 34 ships, known as Flight IIA DDG-51s, incorporate some design changes.

No DDG-51s Procured in FY2006-FY2009

No DDG-51s were procured in FY2006-FY2009. The Navy during this period instead procured three Zumwalt (DDG-1000) class destroyers. The Navy does not plan to procure any additional DDG-1000s. The DDG-1000 design does not use the Aegis system and does not include a capability for conducting BMD operations. Navy plans do not call for modifying the three DDG-1000s to make them BMD-capable.

Procurement of DDG-51s Resumed in FY2010

Procurement of DDG-51s resumed in FY2010, following procurement of the three DDG-1000s. A total of 17 DDG-51s were procured in FY2010-FY2018.²

Transition to Flight III DDG-51 Design in FY2017

DDG-51s procured in FY2017 and subsequent years are being built to a new version of the DDG-51 design called the Flight III version. The Flight III version is to be equipped with a new radar, called the Air and Missile Defense Radar (AMDR) or the SPY-6 radar, that is more capable than the SPY-1 radar installed on all previous Aegis cruisers and destroyers.

Aegis Ships in Allied Navies

Sales of the Aegis system to allied countries began in the late 1980s. Allied countries that now operate, are building, or are planning to build Aegis-equipped ships include Japan, South Korea, Australia, Spain, and Norway.³

Aegis BMD System⁴

Aegis ships are given a capability for conducting BMD operations by incorporating changes to the Aegis system's computers and software, and by arming the ships with BMD interceptor missiles. In-service Aegis ships can be modified to become BMD-capable ships, and DDG-51s procured in FY2010 and subsequent years are being built from the start with a BMD capability.

_

 $^{^1}$ For more on the DDG-51 program, see CRS Report RL32109, Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress, by (name redacted) .

 $^{^2}$ The 15 DDG-51s procured in FY2010-FY2017 include one in FY2010, two in FY2011, one in FY2012, three in FY2013, one in FY2014, two in FY2015, three in FY2016, two in FY2017, and two in FY2018.

³ The Norwegian ships are somewhat smaller than the other Aegis ships, and consequently carry a reduced-size version of the Aegis system that includes a smaller, less-powerful version of the SPY-1 radar.

⁴ Unless stated otherwise, information in this section is taken from MDA briefings on the Aegis BMD program given to CRS and CBO analysts on the MDA's FY2019 and prior-year budget submissions.

Versions of Aegis BMD System

The Aegis BMD system exists in several variants. Listed in order of increasing capability, these are the 3.6.X variant, the 4.0.3 variant, the 4.1 variant, the 5.0 CU (Capability Upgrade) variant (also known as the Baseline [BL] 9.C1 variant), the 5.1 variant (also known as the BL 9.C2 variant), and the 6.X variant (also known as the BL 10 variant).

Figure 1 summarizes the capabilities of most of these variants and correlates them with the phases of the European Phased Adaptive Approach (or EPAA; see below) for European BMD operations.

Aegis BMD Interceptor Missiles

The BMD interceptor missiles used by Aegis ships are the Standard Missile-3 (SM-3), the SM-2 Block IV, and the SM-6.

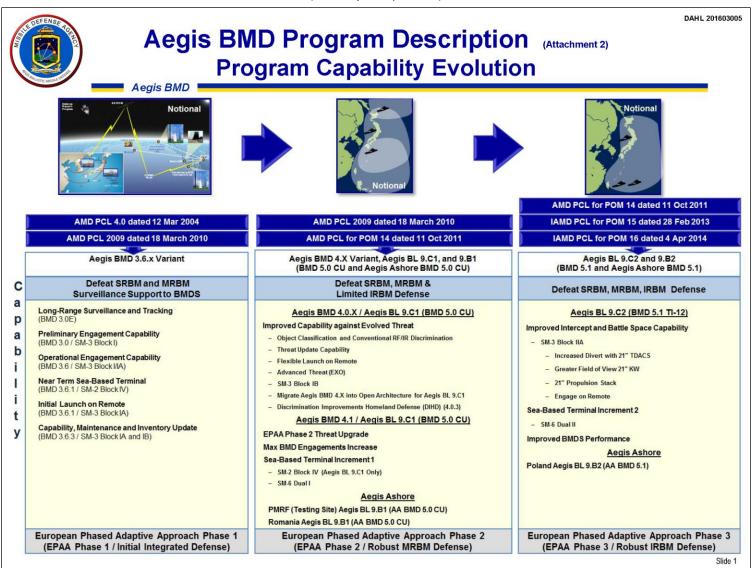
SM-3 Midcourse Interceptor

The SM-3 is designed to intercept ballistic missiles above the atmosphere (i.e., exo-atmospheric intercept), in the midcourse phase of an enemy ballistic missile's flight. It is equipped with a "hitto-kill" warhead, called a kinetic vehicle, that is designed to destroy a ballistic missile's warhead by colliding with it. MDA and Navy plans call for fielding increasingly capable versions of the SM-3 in coming years. The current versions, called the SM-3 Block IA and SM-3 Block IB, are to be supplemented in coming years by SM-3 Block IIA.

Compared to the Block IA version, the Block IB version has an improved (two-color) target seeker, an advanced signal processor, and an improved divert/attitude control system for adjusting its course. Compared to the Block IA and 1B versions, which have a 21-inch-diameter booster stage at the bottom but are 13.5 inches in diameter along the remainder of their lengths, the Block IIA version has a 21-inch diameter along its entire length. The increase in diameter to a uniform 21 inches provides more room for rocket fuel, permitting the Block IIA version to have a burnout velocity (a maximum velocity, reached at the time the propulsion stack burns out) that is greater than that of the Block IA and IB versions, 5 as well as a larger-diameter kinetic warhead. The United States and Japan have cooperated in developing certain technologies for the Block IIA version, with Japan funding a significant share of the effort. 6

⁵ Some press reports and journal articles, all of which are now more than a decade old, report unconfirmed figures on

Defense, September 6, 2000 (guest perspective; including graphic on page 21); Robert Holzer, "DoD Weighs Navy Interceptor Options, Defense News, July 24, 2000: 1, 60 (graphic on page 1); and Robert Holzer, "U.S. Navy Gathers


Strength, Allies in NMD Showdown," Defense News, March 15, 1999: 1, 42 (graphic on page 1).

the burnout velocities of various SM-3 missile configurations (some of which were proposed but ultimately not pursued). See, for example, J. D. Williams, *The Future Of Aegis Ballistic Missile Defense*, point paper dated October 15, 2004, accessed online at http://marshall.org/wp-content/uploads/2013/08/Williams-The-Future-of-Aegis-Ballistic-Missile-Defense.pdf; "STANDARD Missile-3 Destroys a Ballistic Missile Target in Test of Sea-based Missile Defense System," Raytheon news release circa January 26, 2002; Gopal Ratnam, "U.S. Navy To Play Larger Role In Missile Defense, *Defense News*, January 21-27, 2002: 10; Hans Mark, "A White Paper on the Defense Against Ballistic Missiles," *The Bridge*, Summer 2001, pp. 17-26, accessed online at https://www.nae.edu/File.aspx?id=7315; Michael C. Sirak, "White House Decision May Move Sea-Based NMD Into Spotlight," *Inside Missile Defense*, September 6, 2000: 1; Henry F. Cooper and J.D. Williams, "The Earliest Deployment Option—Sea-Based Defenses," *Inside Missile*

⁶ The cooperative research effort has been carried out under a U.S.-Japan memorandum of agreement signed in 1999. The effort has focused on risk reduction for four parts of the missile: the sensor, an advanced kinetic warhead, the second-stage propulsion, and a lightweight nose cone. The Block IIA development effort includes the development of a missile, called the Block II, as a stepping stone to the Block IIA. As a result, the Block IIA development effort has (continued...)

Figure I.Aegis BMD System Variants

(Summary of capabilities)

Source: MDA briefing slide provided to CRS on March 25, 2016.

A March 26, 2018, press report states:

[MDA] Director Lt. Gen. Sam Greaves said MDA "is evaluating the technical feasibility of the capability of the SM-3 Block IIA missile, currently under development, against an ICBM-class target."

"If proven to be effective against an ICBM, this missile could add a layer of protection, augmenting the currently deployed GMD system," Greaves said in written testimony submitted March 22 to the Senate Armed Services strategic forces subcommittee.

(...continued)

sometimes been called the Block II/IIA development effort. The Block II missile is not planned as a fielded capability.

Congressional Research Service

[Greaves] said MDA will conduct a demonstration of the SM-3 Block IIA against an ICBM-like target by the end of 2020....

[The FY2018 national defense authorization act] called on MDA to "conduct a test to evaluate and demonstrate, if technologically feasible, the capability to defeat a simple intercontinental ballistic missile threat using the Standard Missile-3 Block IIA missile interceptor."

MDA and Navy plans at one point called for the SM-3 Block IIA to be succeeded by a still-more-capable interceptor called the SM-3 Block IIB. The effort to develop that missile, however, was ended, and MDA reportedly is not pursuing any follow-on capabilities to the SM-3 Block IIA.⁸

SM-2 and SM-6 Terminal Interceptors

The SM-2 Block IV is designed to intercept ballistic missiles inside the atmosphere (i.e., endo-atmospheric intercept), during the terminal phase of an enemy ballistic missile's flight. It is equipped with a blast fragmentation warhead. The existing inventory of SM-2 Block IVs—72 as of February 2012—was created by modifying SM-2s that were originally built to intercept aircraft and ASCMs. A total of 75 SM-2 Block IVs were modified, and 3 were used in BMD flight tests.

MDA and the Navy are now procuring a more capable terminal-phase (endo-atmospheric intercept) BMD interceptor based on the SM-6 air defense missile (the successor to the SM-2 air defense missile). The SM-6 is a dual-capability missile that can be used for either air defense (i.e., countering aircraft and anti-ship cruise missiles) or ballistic missile defense.

European Phased Adaptive Approach (EPAA) for European BMD

On September 17, 2009, the Obama Administration announced a new approach for regional BMD operations called the Phased Adaptive Approach (PAA). The first application of the approach is in Europe, and is called the European PAA (EPAA). EPAA calls for using BMD-capable Aegis ships, a land-based radar in Europe, and two Aegis Ashore sites in Romania and Poland to defend Europe against ballistic missile threats from countries such as Iran.

Phase I of EPAA involved deploying Aegis BMD ships and a land-based radar in Europe by the end of 2011. Phase II involved establishing the Aegis Ashore site in Romania with SM-3 IB interceptors in 2016. Phase 3 involves establishing the Aegis Ashore site in Poland with SM-3 IIA interceptors by perhaps FY2020. The completion of construction of the Poland site has been delayed by at least a year, MDA says, due to contractor performance issues. Each Aegis Ashore site in the EPAA is to include a structure housing an Aegis system similar to the deckhouse on an Aegis ship and 24 SM-3 missiles launched from a re-locatable Vertical Launch System (VLS) based on the VLS that is installed in Navy Aegis ships. ¹⁰

-

⁷ Jason Sherman, "MDA Exploring Potential of SM-3 Block IIA Against ICBM Threat," *Inside the Navy*, March 26, 2018.

⁸ See, for example, Justin Doubleday, "Missile Defense Agency Not Pursuing Follow-On to SM-3 Block IIA Interceptor," *Inside the Navy*, October 24, 2016.

⁹ The Aegis Ashore site in Romania was operationally certified on May 12, 2016. (See "Aegis Ashore Missile Defense System-Romania Operationally Certified, *Navy News Service*, May 12, 2016; Sam LaGrone, "Aegis Ashore Site in Romania Declared Operational," *USNI News*, May 12, 2016.)

¹⁰ For additional discussion of the Aegis Ashore sites, see Edward Lundquist, "Aegis Ashore Adapts Sea-Based Missile Defense System to Protect Europe," *National Defense*, September 2016.

Although BMD-capable Aegis ships were deployed to European waters before 2011, the first BMD-capable Aegis ship officially deployed to European waters as part of the EPAA departed its home port of Norfolk, VA, on March 7, 2011, for a deployment to the Mediterranean that lasted several months.¹¹

Numbers of BMD-Capable Aegis Ships and SM-3 Interceptors

Table 1 shows numbers of BMD-capable Aegis ships and SM-3 interceptor deliveries under DOD's FY2019 budget submission. Two Japan-homeported BMD-capable Aegis destroyers included in the figures shown in **Table 1**—the *Fitzgerald* (DDG-62) and the *John S McCain* (DDG-56)—were seriously damaged in collisions with merchant ships in waters off the coasts of Japan and Singapore in June 2017 and August 2017, respectively, and are now being repaired. Of the 35 BMD-capable ships in operation as of February 2018, 19 were homeported in the Pacific fleet, and 16 in the Atlantic fleet. The inventories of SM-3 interceptors are lower than the delivery figures shown in the table due to the use of SM-3s in tests.

Table 1. Numbers of BMD-Capable Aegis Ships and SM-3 Missiles Under FY2019

Budget Submission

	FY17	FY18	FYI9 (req.)	FY20 (proj.)	FY2I (proj.)	FY22 proj.)	FY23 (proj.)
BMD-capable Aegis ships							
3.6 version	17	15	10	6	5	4	4
4.0.X version	9	2	0	0	0	0	0
4.1 version	I	9	16	20	21	22	22
BL 9C.I version	8	10	7	4	I	0	0
BL 9.C2 version	0	2	8	16	22	29	31
Total	35	38	41	46	49	55	57
Aegis Ashore sites	I	I	2	2	2	2	2
SM-3 missile cumulative del	iveries						
Block I/IA	150	150	150	150	150	150	150
Block IB	147	182	218	253	287	324	362
Block IIA	0	4	15	17	27	42	48
Total	297	336	383	420	464	516	560

Source: FY2019 MDA budget submission. The FY2019 quantity of 2 for Aegis Ashore sites in FY2019 may on reflect the delay in the construction of the second (Poland) site to FY2020.

_

¹¹ Karen Parrish, "Milestone nears for European Missile Defense Plan," *American Forces Press Service*, March 2, 2011 (http://archive.defense.gov/news/newsarticle.aspx?id=62997); Untitled "Eye On The Fleet" news item, *Navy News Service*, March 7, 2011 (accessed online at http://www.navy.mil/view_single.asp?id=98184); "Warship With Radar Going To Mediterranean," *Washington Post*, March 2, 2011; Brock Vergakis, "US Warship Deploys to Mediterranean to Protect Europe Form Ballistic Missiles, *Canadian Press*, March 7, 2011.

Homeporting of BMD-Capable DDG-51s in Spain

On October 5, 2011, the United States, Spain, and NATO jointly announced that, as part of the EPAA, four BMD-capable Aegis ships were to be forward-homeported (i.e., based) at the naval base at Rota, Spain. The four ships are the destroyers *Ross* (DDG-71) and *Donald Cook* (DDG-75), which moved to Rota in FY2014, and the destroyers *Carney* (DDG-64) and *Porter* (DDG-78), which moved to Rota in FY2015. The moves involved an estimated 1,239 military billets (including 1,204 crew members for the four ships and 35 shore-based support personnel), and about 2,100 family members. The Navy estimated the up-front costs of transferring the four ships at \$92 million in FY2013, and the recurring costs of basing the four ships in Spain rather than in the United States at roughly \$100 million per year.

Rota is on the southwestern Atlantic coast of Spain, a few miles northwest of Cadiz, and about 65 miles northwest of the Strait of Gibraltar leading into the Mediterranean. U.S. Navy ships have been homeported at Rota at various points in the past, most recently (prior to the current arrangement) in 1979. ¹⁶ For additional background information on the Navy's plan to homeport four BMD-capable Aegis destroyers at Rota, Spain, see **Appendix B.**

Aegis BMD Flight Tests

Since January 2002, the Aegis BMD system has achieved 30 successful exo-atmospheric intercepts in 39 attempts using the SM-3 missile (including 3 successful intercepts in 4 attempts by Japanese Aegis ships, and one successful intercept in two attempts attempt using the Aegis Ashore system), and 7 successful endo-atmospheric intercepts in 7 attempts using the SM-2 Block IV and SM-6 missiles, making for a combined total of 37 successful intercepts in 46 attempts.

In addition, on February 20, 2008, a BMD-capable Aegis cruiser operating northwest of Hawaii used a modified version of the Aegis BMD system with the SM-3 missile to shoot down an inoperable U.S. surveillance satellite that was in a deteriorating orbit.¹⁷ Including this intercept in

¹² "Announcement on missile defence cooperation by NATO Secretary General Anders Fogh Rasmussen, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero and US Defense Secretary Leon Panetta," October 5, 2011, accessed October 6, 2011, at http://www.nato.int/cps/en/SID-107ADE55-FF83A6B8/natolive/opinions_78838.htm. See also "SECDEF Announces Stationing of Aegis Ships at Rota, Spain," accessed October 6, 2011, at http://www.navy.mil/search/display.asp?story_id=63109.

¹³ Source: Navy information paper dated March 8, 2012, provided by Navy Office of Legislative Affairs to CRS on March 9, 2012.

¹⁴ Source: Navy briefing slides dated February 27, 2012, provided by the Navy to CRS on March 9, 2012.

¹⁵ Source: Navy briefing slides dated February 27, 2012, provided by the Navy to CRS on March 9, 2012. The briefing slides state that the estimated up-front cost of \$92 million includes \$13.5 million for constructing a new weapon magazine, \$0.8 million for constructing a pier laydown area, \$3.4 million for constructing a warehouse, \$5.0 million for repairing an existing facility that is to be used as an administrative/operations space, and \$69.3 million for conducting maintenance work on the four ships in the United States prior to moving them to Rota. The briefing states that the estimated recurring cost of \$100 million per year includes costs for base operating support, annual PCS (personnel change of station) costs, a pay and allowances delta, annual mobile training team costs, ship maintenance work, the operation of a Ship Support Activity, and higher fuel costs associated with a higher operating tempo that is maintained by ships that are homeported in foreign countries.

¹⁶ Source: Sam Fellman, "U.S. To Base Anti-Missile Ships in Spain," Defense News, October 10, 2011: 76.

¹⁷ The modifications to the ship's Aegis BMD midcourse system reportedly involved primarily making changes to software. DOD stated that the modifications were of a temporary, one-time nature. Three SM-3 missiles reportedly were modified for the operation. The first modified SM-3 fired by the cruiser successfully intercepted the satellite at an altitude of about 133 nautical miles (some sources provide differing altitudes). The other two modified SM-3s (one (continued...)

the count increases the totals to 31 successful exo-atmospheric intercepts in 40 attempts using the SM-3 missile, and 38 successful exo- and endo-atmospheric intercepts in 47 attempts using SM-3, SM-2 Block IV, and SM-6 missiles.

The Aegis BMD development effort, including Aegis BMD flight tests, is often described as following a development philosophy long held within the Aegis program office of "build a little, test a little, learn a lot," meaning that development is done in manageable steps, then tested and validated before moving on to the next step. ¹⁸

For further background information on Aegis BMD flight tests, see **Appendix A**.

Allied Participation and Interest in Aegis BMD Program

Japan¹⁹

Overview

Japan's interest in BMD, and in cooperating with the United States on BMD matters, was heightened in August 1998, when North Korea test-fired a Taepo Dong-1 ballistic missile that flew over Japan before falling into the Pacific.²⁰ Japan's interest has been periodically reinforced since then by subsequent North Korean ballistic missile test flights.

(...continued)

carried by the cruiser, another carried by an engage-capable Aegis destroyer) were not fired, and the Navy stated it would reverse the modifications to these two missiles. (For additional information, see the MDA discussion available online at http://www.mda.mil/system/aegis_one_time_mission.html, and also Peter Spiegel, "Navy Missile Hits Falling Spy Satellite," Los Angeles Times, February 21, 2008; Marc Kaufman and Josh White, "Navy Missile Hits Satellite, Pentagon Says," Washington Post, February 21, 2008; Thom Shanker, "Missile Strikes A Spy Satellite Falling From Its Orbit," New York Times, February 21, 2008; Bryan Bender, "US Missile Hits Crippled Satellite," Boston Globe, February 21, 2008; Zachary M. Peterson, "Navy Hits Wayward Satellite On First Attempt," NavyTimes.com, February 21, 2008; Dan Nakaso, "Satellite Smasher Back At Pearl," Honolulu Advertiser, February 23, 2008; Zachary M. Peterson, "Lake Erie CO Describes Anti-Satellite Shot," NavyTimes.com, February 25, 2008; Anne Mulrine, "The Satellite Shootdown: Behind the Scenes," U.S. News & World Report, February 25, 2008; Nick Brown, "US Modified Aegis and SM-3 to Carry Out Satellite Interception Shot," Jane's International Defence Review, April 2008: 35.)

MDA states that the incremental cost of the shoot-down operation was \$112.4 million when all costs are included. MDA states that this cost is to be paid by MDA and the Pacific Command (PACOM), and that if MDA is directed to absorb the entire cost, "some realignment or reprogramming from other MDA [program] Elements may be necessary to lessen significant adverse impact on [the] AEGIS [BMD program's] cost and schedule." (MDA information paper dated March 7, 2008, provided to CRS on June 6, 2008. See also Jason Sherman, "Total Cost for Shoot-Down of Failed NRO Satellite Climbs Higher," *InsideDefense.com*, May 12, 2008.)

¹⁸ See, for example, "Aegis BMD: "Build a Little, Test a Little, Learn a Lot"," USNI blog, March 15, 2010, accessed September 11, 2013, at http://blog.usni.org/2010/03/15/aegis-bmd-build-a-little-test-a-little-learn-a-lot, and "Aegis Ballistic Missile Defense, Aegis Ballistic Missile Defense Overview for the George C. Marshall Institute, RADM Alan B. Hicks, USN, Aegis BMD Program Director, August 3, 2009, slide 16 of 20, entitled "Some of our Philosophies In a Nutshell (1 of 2)," accessed September 11, 2011, at http://www.marshall.org/pdf/materials/743.pdf.

¹⁹ For a research paper providing additional background information U.S.-Japan cooperation in ballistic missile defense, see Rachel Hoff, "U.S.-Japan Missile Defense Cooperation: Increasing Security and Cutting Costs," American Action Forum, December 2, 2015.

²⁰ For a discussion, see CRS Report RL31337, *Japan-U.S. Cooperation on Ballistic Missile Defense: Issues and Prospects*, by (name redacted) . This archived report was last updated on March 19, 2002. See also CRS Report RL33436, *Japan-U.S. Relations: Issues for Congress*, coordinated by (name redacte d) .

BMD-Capable Aegis Destroyers

Japan is modifying all six of its Aegis destroyers to include the Aegis BMD capability. As of August 2017, four of the six ships reportedly had been modified, and Japan planned to modify a fifth by March 2018, or perhaps sooner than that.²¹ In November 2013, Japan announced plans to procure two additional Aegis destroyers and equip them as well with the Aegis BMD capablity, which will produce an eventual Japanese force of eight BMD-capable Aegis destroyers. As of 2016, the two additional ships were expected to enter service in 2020 and 2021. Japanese BMD-capable Aegis ships have participated in some of the flight tests of the Aegis BMD system using the SM-3 interceptor (see **Table A-1** in **Appendix A**).

Cooperative Development of SM-3 Block IIA Missile

Japan has cooperated with the United States on development the SM-3 Block IIA missile. Japan developed certain technologies for the missile, and paid for the development of those technologies, reducing the missile's development costs for the United States.

Interest in Purchasing Aegis Ashore Sites

In May 2017, it was reported that Japan was considering purchasing an Aegis Ashore capability to further bolster Japan's BMD capabilities for defending against North Korean ballistic missiles. ²² In August 2017, it was reported that the Japanese government plans to deploy an Aegis Ashore system and will seek funding in the budget for Japan's next fiscal year to cover Aegis Ashore system design costs. ²³ In October 2017, it was reported that Japan is interested in purchasing SM-6 interceptors for its desired Aegis Ashore sites, so that the sites would employ both SM-3 midcourse-interceptors and SM-6 terminal-phase interceptors. ²⁴

In November 2017, it was reported that the United States is providing Japan initial pricing and technical data for both the existing Aegis Ashore system and a version equipped with the AMDR. The report stated that Japan is interested in purchasing two Aegis Ashore systems, and that the systems, if purchased, would go into operation by 2023. It was also reported in November 2017 that the two Aegis Ashore systems may be located at Ground Self-Defense Force (GSDF) facilities in Akita Prefecture in eastern Japan and Yamaguchi Prefecture in western Japan, and would be operated mainly by the GSDF (i.e., Japan's army). In December 2017, it was reported that that the Japanese cabinet had approved the purchase of two Aegis Ashore systems.

²¹ Richard Abott, "Japan Plans To Expand Missile Defense Systems, Includes Aegis Ashore," *Defense Daily*, August 21, 2017: 7-9.

²² Sam LaGrone, "Defense Minister: Japan Considering Purchasing Aegis Ashore Following North Korean ICBM Test," *USNI News*, May 16, 2017.

²³ Richard Abott, "Japan Plans To Expand Missile Defense Systems, Includes Aegis Ashore," *Defense Daily*, August 21, 2017: 7-9.

²⁴ Richard Tomkins, "Report: Japan Eyeing SM-6 Missiles for Defense Program," *United Press International*, October 20, 2017

²⁵ Anthony Capaccio, "Japan in Talks With U.S. on Buying Aegis Missile Defense," *Bloomberg*, November 7, 2017.

²⁶ Yomiuri Shimbun, "Akita, Yamaguchi to Get Aegis Ashore/GSDF Involvement Expected to Strengthen Missile Defense," *The Japan News*, November 11, 2017. See also Kyodo, "Japan Mulling News Missile Interceptor Deployment to Guard Against North Korea," *South China Morning Post*, November 11, 2017.

²⁷ "Japan to Expand Ballistic Missile Defense with Ground-Based Aegis Batteries," *Reuters*, December 18, 2017; Daisuke Kikuchi, "Japan Approves Introduction of Aegis Ashore Missile Defense System amid North Korea Threat," *Japan Times*, December 19, 2017; Mari Yamaguchi, "Japan to Buy Aegis Ashore Missile Defense Systems," *Defense* (continued...)

Other Countries

Other countries that MDA views as potential naval BMD operators (using either the Aegis BMD system or some other system of their own design) include the United Kingdom, the Netherlands, Spain, Germany, Denmark, South Korea, and Australia. Spain, South Korea, and Australia either operate, are building, or are planning to build Aegis ships. The other countries operate destroyers and frigates with different combat systems that may have potential for contributing to BMD operations.

For additional background information on allied participation and interest in the Aegis BMD program for countries other than Japan, see **Appendix C**.

FY2019 MDA Funding Request

The Aegis BMD program is funded mostly through MDA's budget. The Navy's budget provides additional funding for BMD-related efforts. **Table 2** shows MDA procurement and research and development funding for the Aegis BMD program.

Table 2. MDA Funding for Aegis BMD Efforts, FY2019-FY2023

(In millions of dollars, rounded to nearest tenth; totals may not add due to rounding)

	FYI9 (req.)	FY20 (proj.)	FY21 (proj.)	FY22 (proj.)	FY23 (proj.)
Procurement					
Aegis BMD (line 29)	593.5	576.2	538.6	565.7	767.0
Aegis BMD Advance Procurement (line 30)	115.2	97.0	44.9	17.5	0
Aegis Ashore Phase III (line 34)	15.0	0	0	0	0
Aegis BMD hardware and software (line 36)	97.I	125.8	60.4	87.2	85.0
SUBTOTAL Procurement	820.8	799.0	643.9	670.4	852.0
Research and development					
Aegis BMD (PE 0603892C) (line 78)	767.5	780.I	707.9	693.3	562.7
Aegis BMD Test (PE 0604878C) (line 107)	95.8	80.7	94.1	146.9	136.6
Land-based SM-3 (PE 0604880C) (line 109)	27.7	29.3	28.4	27.2	28.2
Aegis SM-3 IIA (PE 0604881C) (line 110)	0	0	0	0	0
SUBTOTAL RDT&E	891.0	890. I	830.4	867.4	727.5
TOTAL	1,711.8	1,689.1	1,474.3	1,537.8	1,579.5

Source: Table prepared by CRS based on FY2019 MDA budget submission.

As shown in **Table 2**, which shows MDA funding only, MDA's proposed FY2019 budget requests a total of \$1,711.8 million in procurement and research and development funding for Aegis BMD efforts, including funding for the two Aegis Ashore sites that are part of the EPAA, which are referred to in the table as funding for the land-based SM-3. MDA's budget also includes

-

^{(...}continued)

News, December 19, 2017; Megan Eckstein, "Japan Cabinet Approves Aegis Ashore Buy to Supplement DDGs In Ballistic Missile Defense," *USNI News*, December 22, 2017.

additional funding not shown in the table for operations and maintenance (O&M) and military construction (MilCon) for the Aegis BMD program.

Issues for Congress

FY19 Funding Request

One issue for Congress is whether to approve, reject, or modify MDA's FY2019 procurement and research and development funding requests for the program. In considering this issue, Congress may consider various factors, including whether the work that MDA is proposing to fund for FY2019 is properly scheduled for FY2019, and whether this work is accurately priced.

Required vs. Available Numbers of BMD-Capable Aegis Ships

Overview

Another potential issue for Congress concerns required numbers of BMD-capable Aegis ships versus available numbers of BMD-capable Aegis ships. Some observers are concerned about the potential operational implications of a shortfall in the available number of BMD-capable relative to the required number.

A March 13, 2015, Navy information paper states the following:

The 2014 update to the 2012 [Navy] Force Structure Assessment sets the requirement at 40 advanced capable BMD (Baseline 9+) ships [i.e., ships equipped with the Baseline 9 version of the Aegis system, or later versions, and a BMD capability], as part of the 88 large surface combatant requirement [i.e., the Navy's requirement for the fleet to have a total of 88 cruisers and destroyers of all types], to meet Navy unique requirements to support defense of the sea base and limited expeditionary land base sites.

The basic and intermediate capable BMD ships remaining in inventory will continue to contribute to the sourcing of Combatant Commander (CCDR) requests independent of the Navy unique requirement. This CCDR demand has increased from 44 in FY12-14 to 77 in FY16. Navy continues to be challenged to meet all CCDR demand for BMD ships, but will meet 100% of Secretary of Defense adjudicated requirements in FY16. To better meet CCDR demand and the Navy unique requirement, Navy is building advanced BMD capability in new construction ships and modernizing existing destroyers with advanced BMD capability....

The minimum requirement for 40 advanced capable BMD ships is based on the Navy unique requirement as follows. It accepts risk in the sourcing of CCDR requests for defense of land.

- 27 to meet CVN escort demand for rotational deployment of the carrier strike groups
- 9 in FDNF Japan to meet operational timelines in PACOM
- 4 in FDNF Europe for rotational deployment in EUCOM²⁸

²⁸ Navy information paper dated March 13, 2015, entitled "BMD Capable Ships Requirement," posted April 14, 2015, at InsideDefense.com (subscription required). See also Lara Seligman, "Memo To Congress: Navy 'Challenged' To Meet Soaring Demand For Missile Defense," *InsideDefense.com Defense Alert*, April 14, 2015.

The issue of required numbers of BMD-capable Aegis ships versus available numbers of BMD-capable Aegis ships was discussed at some length at a June 17, 2015, hearing on U.S. Navy surface combatant capacity before the Seapower and Projection Forces subcommittee of the House Armed Services Committee. At this hearing, the Navy witnesses stated in their prepared testimony that

The 2014 update to the 2012 FSA resulted in a total requirement of 308 ships [of all types].... Of particular note, the combination of employment cycle changes, home porting of additional LSCs forward, shifting of the Ballistic Missile Defense (BMD) of land mission to ashore assets, and independent deployment of DDG 1000s results in no change to the LSC objective of 88 ships. However, the 2014 FSA update did provide the additional detail that 40 LSCs require advanced BMD capabilities to meet Navy-unique requirements to provide defense of the sea base and expeditionary land base sites, and 11 LSCs require the ability to support an embarked Air Defense Commander....

Navy BMD continues to be in high demand, as COCOM demand has increased from 44 in FY 2012-2014 to 77 in FY 2016. As mentioned previously, the 2014 update to the 2012 Force Structure Assessment sets the requirement at 40 advanced capable BMD ships, as part of the 88 LSC requirement, to meet Navy unique requirements to support defense of the sea base and limited expeditionary land base sites. To better meet COCOM demand and the Navy unique requirement, Navy is building advanced BMD capability in new construction destroyers and modernizing existing destroyers with advanced BMD capability. The basic and intermediate capable BMD ships remaining in inventory will continue to contribute to the sourcing of COCOM requests independent of the Navy unique requirement. Navy continues to meet 100% of Secretary of Defense adjudicated requirements.

During the discussion portion of the hearing, one of the Navy witnesses—Rear Admiral Peter Fanta, Deputy Chief of Naval Operations, Director, Surface Warfare Division—when asked about the situation, stated the following:

My requirement at this point is 40 advanced capability ships that have the capability of both knocking down an incoming ballistic missile while simultaneously looking for and firing upon an incoming cruise missile that's at the surface of the ocean. So that is a minimum of 40 advanced capability ballistic missile ships.

I have approximately 33 ballistic missile capable ships. That is not to say they are advanced to that level. And we will reach that in a current build rate of that 40 ships in approximately the mid-2020s at this point, of those advanced capability ships, sir.³⁰

In a subsequent exchange, Fanta stated that

the advanced capability ships are primarily used to defend Navy assets in a high-end fight at sea against a near-peer competitor with advanced capabilities. BMD ships that I spoke of earlier that we have in the low 30s right now and continue to build more, are primarily for COCOM requests to defend other assets such as defended asset lists in various parts of the world.

So they are perfectly capable of handling advanced threats, but just in that one BMD capability. What we don't want to do is mix the peacetime presence requirement of

²⁹ Statement of Rear Admiral Victorino Mercado, Deputy Chief of Naval Operations, Director, Assessment Division, and Rear Admiral Peter Fanta, Deputy Chief of Naval Operations, Director, Surface Warfare Division, Before the Subcommittee on Seapower and Projection Forces of the House Armed Services Committee on Capacity of the U.S. Navy to Project Power With large Surface Combatants, June 17, 2015, pp. 2, 3.

³⁰ Spoken testimony of Rear Admiral Fanta, as reflected in transcript of hearing. See also Lara Seligman, "Surface Warfare Chief: Navy Won't Meed BMD Ship Requirement Until 2026," *Inside the Navy*, June 22, 2015.

those—I won't call them lesser capable, but baseline capability ballistic missile ships with the advanced ones. I need to beat a high-end competitor at sea in the middle of a fight in the middle of the ocean.³¹

BMD-Capable Destroyers Fitzgerald and John S McCain Seriously Damaged

Two Japan-homeported Navy BMD-capable Aegis destroyers—*Fitzgerald* (DDG-62) and *John S McCain* (DDG-56)—were seriously damaged in collisions with merchant ships in waters off the coasts of Japan and Singapore in June 2017 and August 2017, respectively, and are curerntly being repaired. Reportedly, *Fitzgerald* will remain nonoperational for more than a year, and *John S McCain* for at least several months, while repairs on the two ships are completed.³² The temporary loss of these two BMD-capable ships reinforced, at the margin, concerns among some observers about required numbers of BMD-capable Aegis ships versus available numbers of BMD-capable Aegis ships, particularly for performing BMD operations in the Western Pacific.³³

An October 12, 2017, press report states the following:

The Navy is surging a guided-missile destroyer and altering the deployment of a guided-missile destroyer to cover gaps left by two ballistic missile defense-capable destroyers that were damaged in collisions with merchant ships, USNI News has learned.

The Norfolk-based cruiser USS Monterey (CG-61) and Pearl Harbor-based destroyer USS O'Kane (DDG-77) will be deployed to assist in BMD missions, two Navy officials confirmed to USNI News....

O'Kane was scheduled for an independent patrol to an unspecified location before it was tasked to U.S. 7th Fleet for BMD operations in the Western Pacific, a Navy official confirmed to USNI News.

Monterey will conduct an independent BMD deployment in the U.S. 6th and 5th Fleet areas of operation in Europe and the Middle East to ease to overall BMD burden for the service, a Navy official told USNI News.

Both deployments will last about six months.

Monterey's surge deployment follows a seven-month Middle East deployment as part of the Eisenhower Carrier Strike Group, which ended in late December.

_

USNI News, September 2017.

Spoken testimony of Rear Admiral Fanta, as reflected in transcript of hearing. See also Lance M. Bacon, Missile Defense Ships Face Arms Race, High Op Tempo," *Navy Times*, January 31, 2015; Megan Eckstein, "Stackley: Fleet Needs More BMD Ships to Meet Demand," *USNI News*, March 4, 2015; Megan Eckstein, "Navy Officials: Current BMD Strategy 'Unsustainable'; Greenert Asked Hagel for Review," *USNI News*, March 19, 2015; Lance M. Bacon, "BMD Mission Demands Outstrip Fleet's Capabilities," *Defense News*, April 13, 2015; Lara Seligman, "Navy Tells Congress It's Struggling To Meet Soaring Need For BMD Ships," *Inside the Navy*, April 17, 2015; Sydney J. Freedberg, Jr., "Aegis Ambivalence: Navy, Hill Grapple Over Missile Defense Mission," *Breaking Defense*, June 30, 2015; Sydney J. Freedberg, "Aegis Ashore: Navy Needs Relief From Land," *Breaking Defense*, July 2, 2015.
 Sam LaGrone, "USS Fitzgerald Repair Will Take More Than a Year; USS John S. McCain Fix Could Be Shorter,"

³³ See, for example, Chandan Prasad, "USS John McCain: Destroyer Collision Opens Gap In Missile Defense Against North Korea," *International Business Times*, August 21, 2107; Kristen Doerer, "Do U.S. Navy Collisions Weaken Our Defense Against A North Korean Missile Attack?" *PBS NewsHour*, August 22, 2017; Aaron Barruga, "The USS McCain Tragedy Has A Dire Impact On US Missile Defenses," *Task and Purpose*, August 24, 2017; Saadia M. Pekkanen, "To Contend With North Korea, Can Japan Rely On The U.S.?" *Forbes*, August 29, 2017; Mike Fabey

[&]quot;North Korean Missiles Are Testing A Stressed U.S. Defense Net," *Space News*, August 31, 2017.

Both ships will share the U.S. BMD burden left after collisions with merchant ships sidelined guided-missile destroyers USS Fitzgerald (DDG-62) and USS John S. McCain (DDG-56).³⁴

Burden Sharing: U.S. vs. European Naval Contributions to European BMD

Another potential oversight issue for Congress concerns burden sharing—how European naval contributions to European BMD capabilities and operations compare to U.S. naval contributions to European BMD capabilities and operations, particularly in light of constraints on U.S. defense spending, worldwide operational demands for U.S. Navy Aegis ships, and calls by some U.S. and European observers for increased defense efforts by NATO countries in Europe. Potential oversight issues for Congress include the following:

- How does the total value of European naval contributions to European BMD
 capabilities and operations compare to the total value of the U.S. naval
 contributions (including the Aegis Ashore sites) to European BMD capabilities
 and operations?
- Given constraints on U.S. defense spending, worldwide operational demands for U.S. Navy Aegis ships, ³⁵ and calls by some U.S. and European observers for increased defense efforts by NATO countries in Europe—as well as the potential for European countries to purchase or build BMD-capable Aegis ships, upgrade existing ships with BMD capabilities, or purchase Aegis ashore systems—should the United States seek increased investment by European countries in their regional BMD capabilities so as to reduce the need for assigning BMD-capable U.S. Navy Aegis ships to the EPAA? Why should European countries not pay a greater share of the cost of the EPAA, since the primary purpose of the EPAA is to defend Europe against theater-range missiles?

Potential Future BMD Contribution from Lasers, Railguns, and Hypervelocity Projectiles

Another potential issue for Congress concerns the potential for ship-based lasers, electromagnetic railguns (EMRGs), and hypervelocity projectiles (HVPs) to contribute in coming years to Navy terminal-phase BMD operations and the impact this might eventually have on required numbers of ship-based BMD interceptor missiles. Another CRS report discusses the potential value of ship-lasers, EMRGs, and HVPs for performing various missions, including, potentially, terminal-phase BMD operations.³⁶

³⁴ Sam LaGrone, "Navy to Surge USS Monterey, Deploy USS O'Kane for BMD Operations to Cover Ships Sidelined in Collisions," *USNI News*, October 12, 2017. See also Mark D. Faram, "Navy to Send Destroyer to Far East to Boost Ballistic Missile Defense," *Navy Times*, October 12, 2017.

³⁵ See, for example, Lance M. Bacon, "Missile Defense Ships Face Arms Race, High Op Tempo," *Navy Times*, January 31, 2015.

³⁶ See CRS Report R44175, Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress, by (name redacted) .

Technical Risk and Test and Evaluation Issues

Another potential oversight issue for Congress is technical risk and test and evaluation issues in the Aegis BMD program.

January 2018 DOT&E Report

A January 2018 report from DOD's Director, Operational Test and Evaluation (DOT&E)—DOT&E's annual report for FY2017—stated the following in its section on the Aegis BMD program:

Assessment

- With one exception, the MDA completed its planned flight testing with the SM-3 Block IB TU [Threat Update] missile as documented in the Integrated Master Test Plan. The lone exception is FTM-24, a planned engagement against a complex MRBM target that the MDA delayed until FY20. The legacy SM-3 Block IB missile (i.e., without the TU) completed its flight testing in November 2014.
- DOT&E has lower confidence in SM-3 missile reliability due to recent in-flight failures, coupled with MDA shortfalls in simulating the in-flight environment in its SM-3 ground test program, addressing failures and anomalies identified during flight testing; and implementing a rigorous configuration management and control process for SM-3 production.
- The MDA missile ground test program may not adequately simulate the in-flight environment:
- Contractors introduced a software design flaw into the SM-3 Block IB that was not present in the SM-3 Block IA. The MDA did not discover this flaw during ground testing, but instead discovered this flaw during a failed SM CTV [Controlled Test Vehicle]-01 launch in 2016 and subsequent investigation after the EPAA Phase 2 capability declaration.
- During the course of routine production testing, Raytheon discovered a rare condition that could cause the SM-3 Block IB Kinetic Warhead Guidance Unit Guidance Unit to fail. The MDA halted deliveries of SM-3 Block IB missiles for approximately 5 months while it identified a root cause. The MDA corrected the problem with Block IB software build 6.404, released in August 2016.
- The SM-3 Block IB electromagnetic interference test and subsequent ground tests have not been compliant with Military Standard 461F, did not evaluate the self-compatibility of SM-3 Block IB electrical and software systems, and did not reflect in-flight electrical grounding, including electrical isolation and grounding shifts due to stage separations.
- The MDA did not thoroughly address, prior to flight testing, the software flaws that were present during recent flight testing:
- The MDA did not correct the software design flaw that led to the SM CTV-01 failure before conducting the test. The MDA did not correct this problem before retesting the SM-3 during SM CTV-01a, but rather employed patches in a non-tactical software build to conduct the test.
- Another software design flaw that caused kinetic warhead guidance units to be unresponsive was observed during contractor acceptance testing, but was not addressed prior to conducting five subsequent flight tests. Although the flaw did not adversely affect the flight tests, it represented an unmitigated risk to SM-3 reliability. The root cause of this flaw appears to be the MDA configuration and control process for SM-3, discussed below.

- The SM-3 program may need to improve configuration management and control:
- The software design flaw that caused the failed SM CTV-01 launch was associated with a change to the software boot-up processes and not related to capability upgrades. The MDA's continuing efforts to improve the SM-3 Block IB could introduce other unintended consequences.
- The MDA discovered the software design flaw associated with kinetic warhead guidance units (also discussed above) when it observed a performance difference in one of the circuit cards in 2016. This performance difference resulted from an approved manufacturing tooling change made in 2011. The MDA did not evaluate the potential for software performance problems caused by the tooling change until it conducted the SM CTV-01 failure investigation 5 years later.
- The MDA did not discover an unapproved manufacturing process change in 2014 associated with wiring harnesses until one failed a hardware inspection over a year later. Failures associated with this change had the potential to prevent stage separation during SM-3 Block IB missile operational use.
- Results from flight testing, high-fidelity M&S [modeling and simulation], and HWIL [hardware in the loop] and distributed ground testing demonstrate that Aegis BMD 4.0 and Baseline 9.1 firing assets can engage and intercept non-separating, simple-separating, and complex-separating ballistic missiles in the midcourse phase with SM-3 Block IB and Block IB TU guided missiles. However, flight testing and M&S are not yet sufficient to assess the full range of expected threat types, ground ranges, and raid sizes.
- The SM-3 Block IIA guided missile has flown in two developmental intercept flight tests, the first achieving a successful intercept. The second attempt, during SFTM-02, was unsuccessful because a sailor onboard the firing ship inadvertently pushed a button that caused the Aegis Weapon System to break engagement and initiate a message commanding the SM-3 Block IIA missile to destruct, destroying the missile in flight. DOT&E attributes this flight test failure to a design deficiency that allows an operator to break a ballistic missile engagement with the push of a button, without having to confirm the action. After conducting a Failure Review Board (FRB), the MDA provided a number of recommendations to the Navy that, if implemented, would preclude this type of failure from reoccurring.
- Two intercept flight tests in previous fiscal years and accredited high-fidelity M&S demonstrated that the Aegis Baseline 9.C1 system's SBT capability can successfully engage select SRBMs with SM-6 Dual I and SM-2 Block IV missiles. The SBT flight tests in FY17 demonstrated the ability to engage select MRBMs in the terminal phase of flight with SM-6 Dual I missiles, but the MDA has not yet performed M&S analyses with accredited models. The MDA plans to conduct M&S studies for select MRBM threats in FY19 and COMOPTEVFOR plans to accredit the M&S in the same timeframe.
- SM CTV-03 in October 2017 demonstrated the capability of the Aegis BMD 4.1 upgrade to fire an SM-6 Dual I missile. The BMD 4.1 build incorporates Baseline 9.C1 capabilities into the BMD 4.0 baseline.
- SM-6 Dual I and SM-2 Block IV missiles have been reliable in SBT flight tests. Missile reliability estimates for these missiles meet the specification, but not with statistical confidence due to the limited number of firings. To date, the MDA and Navy have conducted nine firings of the SM-6 Dual I or SM-6 Processor Replacement Program missile, and five firings of the SM-2 Block IV missile after modification for the SBT mission.
- Reliability, maintainability, availability, and supportability (RMA&S) data that the MDA collected during Aegis Baseline 9.1 BMD-related testing through FY17 show that

the system's availability is less than desired due to large repair and logistics delay times. However, the DOT&E estimate of availability is consistent with the specification.

- The MDA demonstrated the Aegis Baseline 9.C1 system IAMD capabilities to a limited degree in flight testing. IAMD flight test engagements to date have included at most two cruise missile surrogates and a single ballistic missile target.
- MDA ground test events routinely demonstrated that inter-element coordination and interoperability need improvement to increase situational awareness. The tests also highlighted an Aegis BMD problem related to track management when it operates with other elements of the BMDS.
- The FS-17 fleet exercise demonstrated the ability of Aegis BMD 4.0.3 to interoperate with NATO partners over operational communication architectures during cruise missile and ballistic missile engagements, and to use remote data provided by NATO partners to prosecute remote engagements.

Recommendations

- Status of Previous Recommendations. The MDA:
- 1. Partially addressed the second recommendation from FY13 to conduct operationally realistic testing that exercises Aegis BMD 4.0's improved engagement coordination with Terminal High-Altitude Area Defense (THAAD) and Patriot, when it conducted Flight Test Operational-02 (FTO-02) Event 2a (FY16) using an Aegis Baseline 9.C1 destroyer and THAAD firing assets. This flight test did not include Patriot. The MDA plans to include Patriot in FTO-03 Event 2 in FY18.
- 2. Partially addressed the third recommendation from FY14 to ensure that the Aegis Baseline 9.C1 system conducts sufficient flight testing to allow for verification, validation, and accreditation (VV&A) of the M&S suite to cover the full design to Aegis BMD battlespace. The MDA has collected sufficient flight test data to allow the BMDS Operational Test Agency (OTA) to accredit the high fidelity M&S suite over a portion of the engagement battlespace for Aegis Baseline 9.B1. The MDA and the BMDS OTA plan to conduct VV&A over the remaining battlespace for Baseline 9.C1 in FY18.
- 3. Has not addressed the second recommendation from FY15 to conduct stressing simultaneous air and ballistic missile defense engagements with the Aegis Baseline 9.C1 system operating in IAMD radar priority mode, with simultaneous engagement of multiple ballistic missile and anti-ship cruise missile threats.
- 4. Has not addressed the first recommendation from FY16 to conduct high-fidelity M&S runs-for-the-record for Aegis Baseline 9.B2 and 9.C2 to assess performance across the expected engagement battlespace in all Combatant Command areas of responsibility and develop an appropriate M&S VV&A plan to support that effort. The MDA developed a VV&A plan, but it will not perform Aegis Baseline 9.2 runs-for-the-record until FY20.
- 5. Has not addressed the second recommendation from FY16 to conduct a live-flight test demonstration of a fully remote engagement. The MDA plans to conduct this type of engagement in FY18 during FTM-29.
- 6. Partially addressed the third recommendation from FY16 to include BMDS OTA RMA&S data collectors in all flight test missions to improve the accuracy and statistical confidence of future suitability assessments. COMOPTEVFOR [Commander, Operational Test and Evaluation Force] works with the program to have data collectors present at each flight test event. However, the MDA has not always funded data collectors for follow-on system-level flight tests like FTO-02 Event 1a and FTO-02 Event 2a.
- FY17 Recommendations. The MDA should:

- 1. Conduct an in-depth review of SM-3 missile reliability to ensure ground testing is adequately simulating the in-flight environment as observed during recent test failures.
- 2. Implement processes to fix failures and anomalies identified during SM-3 ground testing prior to flight testing.
- 3. Ensure that SM-3 production configuration management, manufacturing control processes, and reporting requirements are adequate.
- 4. Conduct high-fidelity M&S analysis of the performance of an Aegis Baseline 9 variant ship operating in IAMD radar priority mode when simultaneously engaging multiple ballistic missile and AAW threats.
- 5. Work with the Navy to implement recommendations from the SFTM-02 FRB report, including the implementation of fail-safe software designs, to preclude future inadvertent operator actions from breaking engagements against hostile ballistic missile tracks.³⁷

Regarding the SM-6 missile, the January 2018 DOT&E report also stated the following:

Assessment

- As reported in DOT&E's memorandum, "Post Initial Operational Test and Evaluation Observations and Assessment of Standard Missile-6 Block I Suitability," dated December 2016, DOT&E considers the previously reported uplink/downlink antenna shroud reliability deficiency resolved.
- The Navy developed specific software improvements to SM-6 BLK I to mitigate the classified performance deficiency discovered during IOT&E and in DOT&E's classified IOT&E report. VCD FOT&E events conducted by the Navy demonstrated that the software improvements work as intended and lessen the severity of the deficiency, but the improvements did not resolve the deficiency in all instances. The testing identified two concerns that contributed to the deficiency not being fully resolved.
- Testing revealed a classified concern with the missile's Target Detection Device.
- Testing revealed a classified concern with the missile's active seeker.
- NIFC-CA FTS event LFT-5 further demonstrates the NIFC-CA FTS capability, but as with previous NIFC-CA FTS tests the Navy did not conduct the test under operationally realistic conditions. Moreover, the Navy's test scenarios are not sufficiently challenging to demonstrate the NIFC-CA FTS requirements defined in the Navy's September 2012 NIFC-CA FTS Testing Capability Definition Letter. Nevertheless, the Navy has deployed the NIFC-CA FTS capability as a tactical option in fleet air defense. DOT&E reported on NIFC-CA FTS in the classified "Aegis Weapon System Baseline 9A Early Fielding Report" issued in July 2015, and will continue to report on NIFC-CA FTS in future Aegis Weapon System assessments.
- During SM-6 BLK 1A event GTV-3a, the SM-6 BLK IA experienced an inflight failure that prevented the target from intercepting its intended target. The failure delayed the start of SM-6 BLK IA operational testing.
- The Launch Availability Key Performance Parameter was unresolved in SM-6 BLK I IOT&E. During SM-6 BLK I FOT&E, the Navy fired, without failure, seven missiles that met the required storage requirements. While these results were not sufficient to state that BLK I meets its required Launch Availability with high statistical confidence, the results were sufficient to indicate no significant problem exists with storage reliability.

³⁷ Department of Defense, Director, Operational Test & Evaluation, *FY2017 Annual Report*, January 2018, pp. 293-295.

Recommendations

- Status of Previous Recommendations.
- The Navy is addressing the previous recommendations from FY14 to 1) complete corrective actions of the classified performance deficiency discovered during IOT&E and 2) develop a flight test program to test those corrective actions.
- The Navy has not addressed the FY15 recommendation to provide DOT&E an operational test concept and operational test plan for NIFC-CA FTS Increment 2; DOT&E rescinded this recommendation as the Navy integrated NIFC-CA FTS as a tactical option in fleet air defense. DOT&E removed the NIFC-CA FTS program from T&E oversight and it will be tested as a normal tactic in future Aegis/SM-6 testing.
- FY17 Recommendation.
- 1. The Navy should continue investigating the classified performance deficiency discovered during IOT&E, perform corrective actions, and verify corrective actions with flight tests. This includes correcting the two new problems encountered during FY17 SM-6 BLK I VCD tests.³⁸

May 2017 GAO Report

An May 2017 Government Accountability Office (GAO) report on missile defense programs stated the following for the Aegis BMD program:

The Aegis BMD program supported the European Phased Adaptive Approach (EPAA) Phase 2 delivery in December 2015 with the delivery of AWS 5.0CU. However, another spiral that was part of the original concept was delayed. EPAA Phase 2 capability was supported, in part, by two BMDS level operational flight tests called Flight Test Operational (FTO)-2 Event 1a and FTO-02 Event 2a. While MDA experienced challenges in fiscal year 2015 with the initial attempts at both tests, once conducted, they demonstrated AWS capabilities, allowing EPAA Phase 2 declared delivered. Specifically:

- MDA successfully conducted FTO-02 Event 1a in December 2015. In the test, the Aegis Ashore test installation in Hawaii engaged an air-launched medium range target with the upgraded Aegis BMD Standard Missile (SM)-3 Block IB interceptor using data from the collocated off board radar. The initial test attempt in June 2015—FT0-02 Event 1—failed after a new intermediate-range target malfunctioned. As we previously reported, the delay between the initial test and the retest reduced the time available to assess all aspects of performance prior to the Romania site delivery. In addition, although the system intercepted the target, the Aegis Ashore installation was not equipped with operational version of the planned software known as AWS Baseline 9.B1, which reduced the extent the test reflected the operational architecture.
- MDA conducted FTO-02 Event 2a, in November 2015. The test was designed to demonstrate a layered BMDS with Aegis BMD and Terminal High-Altitude Area Defense (THAAD) sharing common defended areas and shot opportunities against two threat-representative ballistic missile targets. The primary Aegis BMD test objective was to conduct a ballistic missile engagement in the presence of debris generated by a THAAD intercept, while simultaneously conducting anti-air warfare against an anti-ship cruise missile target. Although the Aegis ship successfully engaged the cruise missile, the Aegis BMD SM-3 Block IB failed in flight, preventing an intercept of the ballistic

³⁸ Department of Defense, Director, Operational Test & Evaluation, *FY2017 Annual Report*, January 2018, pp. 220-221.

missile target. Moreover, according to the Director, Operational Test and Evaluation, the scenario with two Aegis targets was less stressing than prior test of similar capabilities. However, despite the Aegis BMD SM-3 Block IB failure, THAAD intercepted the target, MDA was able to collect important data on AWS tracking and engagement processing performance. For further details on the Aegis BMD SM-3 Block IB and THAAD programs, see appendix IV and IX.

Both upgraded software packages— Baseline 9.B1 and 9.C1— offer advanced defense capabilities and integration capability with other systems external to the Aegis ships. However, according to MDA officials both versions required updates, after the EPAA Phase 2 delivery, which were certified July 2016. Additionally, according to DOT&E, testing of Baseline 9.B1 indicated that the weapons system has software issues, which lowers its reliability and availability.

In fiscal year 2016, Aegis BMD continued to assess options for developing AWS 4.1, which was initially planned to provide ballistic missile defense capabilities for additional ships. Specifically, the upgrade was initially planned to be retrofitted on ships, especially those planned for EPAA Phase 2 as ships equipped with Baseline 9.C1 were slated for other regions. However, the effort was put on hold last year, following development challenges and program funding issues. For example, as we reported in May 2015, technical assessments revealed challenges with matching Baseline 9.C1 performance characteristics on ships which utilize older hardware. This year however, MDA continued to explore options to deliver this capability, but not in support of EPAA Phase 2. Rather, current plans indicate full delivery in December 2020.

Aegis BMD also participated in two key BMD system-level assessments for the delivery of discrimination upgrades for Homeland Defense. The tests, called Ground Test Integrated -06 Part 2 and Ground Test Distributed -06 Part 2, employed models and simulations to assess upgraded AWS software—including AWS 4.0.3 and AWS 3.6.3. The new software is designed to provide upgrades for discrimination and interoperability with other BMDS elements. According to MDA, the tests successfully demonstrated the upgrades but analysis delayed the delivery of the associated capability planned for March 2017.

Aegis BMD made progress in development of AWS 5.1 for Aegis ships (Baseline 9.C2) and Aegis Ashore (Baseline 9.B2). AWS 5.1 improves AWS 5.0CU capability against longer range and more complex threats in the middle and terminal phases of flight. It also extends defended areas by engaging threats based on tracks from forward-based sensors. These AWS versions, expected to be delivered in December 2018, are slated to support EPAA Phase 3 and defend against intermediate range ballistic missile attacks.

However, the program schedule to meet EPAA Phase 3 lacks margins and has risk. For example, the deliveries of AWS Baseline 9.C2 and 9.B2 are now planned at the beginning of EPAA Phase 3 integration activities, leaving no time to rectify challenges that could still arise during development. Moreover, communication upgrades for this AWS version, are now behind schedule. Program documentation indicates that the lag in development could result in compatibility issues between these upgrades with the rest of the weapons system. This, in turn, could require retrofits and reduce performance. In addition, C2BMC delays deferred completion of Aegis BMD's capability to intercept threats based on tracks from forward-based sensors until fiscal year 2021.³⁹

Regarding Aegis Ashore systems, the report stated:

-

³⁹ Government Accountability Office, Missile Defense[:] Some Progress Delivering Capabilities, but Challenges with Testing Transparency and Requirements Development Need to Be Addressed, GAO-17-381, May 2017, pp. 81-83.

MDA delivered the Aegis Ashore facility in Romania to support the European Phased Adaptive Approach Phase 2 declaration in December 2015, after demonstrating performance with only one intercept test. As we have previously reported, insufficient testing while fielding assets increases the risk of performance shortfalls and increased costs if issues are discovered as a result of flight testing. In December 2015, MDA conducted a BMDS level flight test—FTO-02 Event 1a—intended to demonstrate the operational capability of EPAA Phase 2 and Aegis Ashore's ability to defend Europe against medium-range ballistic threats. In the test, the Aegis Ashore Missile Defense test facility successfully engaged an air-launched medium-range target with an upgraded Aegis BMD SM-3 Block IB interceptor.

FT0-02 Event 1a was Aegis Ashore's first and only intercept test prior to declaring the site operational. Moreover, since 2013, Aegis Ashore has reduced the number of planned intercept tests prior to EPAA Phase 3 from four to two. According to program officials, they are leveraging data from sea-based Aegis BMD tests, however, conditions at sea are different than on land, as are the system configurations. While MDA delivered Aegis Ashore in Romania, incomplete test data delayed the evaluation of Aegis Ashore's performance against all expected engagement scenarios to determine its capabilities and limitations. This analysis is not expected to be completed until at least fiscal year 2018.

Construction of the Aegis Ashore site in Poland, the schedule for which has already been compressed, has been further complicated due to delays in completing work at the site in Romania. The Romanian site's late finish and the Poland site's slow start has resulted in the Aegis Ashore program concurrently working on both sites, leading to the increased risk of schedule delays or reduced testing. Aegis Ashore program documentation indicated that all work on the Aegis Ashore site in Romania was to be complete by December 2015; however work will be ongoing until at least fiscal year 2017 due to, among other things, the necessity to resolve power system issues required to complete system verification and validation. Overseeing work at two sites simultaneously has placed additional burdens on the program and the contractor's managers. According to program documentation, these issues place the program at risk of not being able to meet its testing and delivery milestones.

MDA has taken some steps to mitigate the project's schedule risks. According to Aegis Ashore officials; they believe "lessons learned" from the construction of the Romania site can be utilized in Poland to offset some schedule compression. Specifically, to reduce schedule risks, the program plans to add additional personnel and is working with the contractor to prevent the delays from further impacting the project schedule. Consequently, according to program documentation, the program expects to complete the installation and delivery of Aegis Ashore Poland on schedule in 2018 and meet the EPAA Phase 3 deadline. However, further delays could result in either delaying the planned delivery or not having sufficient time to conduct all planned testing limiting the warfighter's understanding of the system's capabilities and limitations.

Regarding the SM-3 Block IB interceptor, the report stated:

MDA successfully tested and delivered the Standard Missile-3 Block IB for operational use in fiscal year 2016, but the program still faces several technical issues, some of which have implications for performance or reliability. According to the Department of Operational Test and Evaluation, these reliability issues could negatively affect the interceptor's operational effectiveness due to the chance of the missile failing in flight. MDA assessed the interceptor's reliability as being within its requirements, but is taking steps to address the risks. These steps include redesigning certain components and

⁴⁰ Government Accountability Office, *Missile Defense*[:] *Some Progress Delivering Capabilities, but Challenges with Testing Transparency and Requirements Development Need to Be Addressed*, GAO-17-381, May 2017, pp. 85-86.

working with Raytheon to address quality and production issues that have been discovered during recent reviews.

Addressing reliability concerns discovered during testing introduced delays and additional costs. The SM-3 Block IB program experienced two separate test failures in fiscal year 2016 that required convening a Failure Review Board to identify root causes for the failure and implement corrective actions. As a result of the failures, MDA suspended deliveries of additional interceptors, and as a result MDA missed its target for interceptor delivery. The program has identified the components responsible for the failures and will incorporate fixes during the recertification process.

In part in response to one of our prior recommendations, MDA postponed putting into production a significant design change to the interceptor's third-stage rocket motor until properly tested. MDA further delayed its decision to enter full production, from the 2nd quarter of fiscal year 2016 to the 2nd quarter of fiscal year 2017 while attempting to address issues identified in the most recent test failure. MDA has delayed full production multiple times over the life of the SM-3 Block IB, which was initially scheduled for fourth quarter, fiscal year 2012.

MDA successfully tested the new third-stage rocket motor design with two non-intercept flight tests—Standard Missile Controlled Test Vehicle (SM CTV)-01a and SM CTV-02. The redesign is intended to increase interceptor reliability, and was necessitated by a test failure in October 2013. The program initially planned to execute the tests in February 2016, but delayed the tests after the SM-3 Block IB failed a diagnostic test before the initial attempt. The tests were successfully completed in May 2016 and the redesign was approved for production in July 2016. The first missiles with the redesigned rocket motor are expected for delivery in the second quarter of fiscal year 2017. MDA plans to retrofit existing SM-3 Block IB interceptors during the periodic recertification process. The cost to fix each interceptor is expected to be about \$545 thousand per interceptor.

Regarding the SM-3 Block IIA interceptor, the report stated:

The Aegis BMD SM-3 Block IIA conducted one test in fiscal year 2016, which revealed some technical challenges. Although delayed due to developmental challenges with the guidance system, the SM-3 Block IIA program conducted a non-intercept test named Standard Missile-3 Cooperative Development Controlled Test Vehicle (SCD CTV)-01 in June 2015, as well as the second non-intercept test—SCD CTV-02—in December 2015. Both tests demonstrated key capabilities including the ability to control the interceptor through the final rocket stage, separation of the kinetic warhead, and operation of the warhead after separation. The tests were successful by these measures, but still exposed some technical problems that could affect its schedule and result in further cost overruns. These challenges include design issues with missile guidance systems, which steer the interceptor to the target, and missile communication with sensors.

In order to assess these issues and incorporate lessons learned, the next test, which was also the first intercept test – Standard Missile-3 Block IIA Flight Test Mission (SFTM)-01 – was delayed from the end of fiscal year 2016 to February, 2017. MDA previously stated that any further delay in SFTM-01 could impact the schedule for SFTM-02, and with it, MDA's initial production decision scheduled for the fourth quarter of fiscal year 2017. Program documentation also stated that additional schedule delays could affect future planned testing and increase overall program cost. Despite these risks, MDA does not believe these issues will impact the schedule for EPAA Phase 3.

⁴¹ Government Accountability Office, Missile Defense[:] Some Progress Delivering Capabilities, but Challenges with Testing Transparency and Requirements Development Need to Be Addressed, GAO-17-381, May 2017, pp. 88-89.

The development of the SM-3 Block IIA continues to deal with cost growth, in addition to schedule problems and technical issues, all of which threaten the ability to deliver an effective interceptor on time and within budget. The Missile Defense Agency reports that the contractor's estimated cost at program completion increased by around \$61 million. While the program has implemented some mitigation measures, according to program documentation, additional growth threatens to result in funding shortfalls.

The program has also experienced a delay in awarding the contract for the materials needed to build interceptor test rounds, which has had further impact on the program schedule. In particular, the procurement delay has required adjustments to Flight Test Mission (FTM) -29, the first flight test designed to fire the interceptor against an intermediate-range target while relying on remote sensor data. While the program is taking steps to mitigate the delay, risk remains that the test will be delayed which could affect the scheduled EPAA Phase 3 declaration date. 42

Legislative Activity for FY2019

Summary of Action on FY2019 MDA Funding Request

Table 3 summarizes congressional action on the FY2018 request for MDA procurement and research and development funding for the Aegis BMD program.

Table 3. Summary of Congressional Action on FY2019 Request for MDA Procurement and RDT&E Funding for Aegis BMD Program

(In millions of dollars, rounded to nearest tenth; totals may not add due to rounding)

		•					
		Authorization			ion Approp		
	Request	HASC	SASC	Conf.	HAC	SAC	Conf.
Procurement							
Aegis BMD (line 29)	593.5						
Aegis BMD advance procurement (line 30)	115.2						
Aegis Ashore Phase III (line 34)	15.0						
Aegis BMD hardware and software (line 36)	97.1						
Subtotal Procurement	820.8						
Research, development, test, and eval	uation (RDT&I	≣)					
Aegis BMD (PE 0603892C) (line 78)	767.5						
Aegis BMD test (PE 0604878C) (line 107)	95.8						
Land-based SM-3 (PE 0604880C) (line 109)	27.7						
Aegis SM-3 IIA (PE 0604881C) (line 110)	0						
Subtotal RDT&E	891.0						
TOTAL	1,711.8						

⁴² Government Accountability Office, *Missile Defense*[:] *Some Progress Delivering Capabilities, but Challenges with Testing Transparency and Requirements Development Need to Be Addressed*, GAO-17-381, May 2017, pp. 91-92.

Source: Table prepared by CRS based on DOD's original FY2019 budget submission, committee and conference reports, and explanatory statements on FY2018 National Defense Authorization Act and FY2019 DOD Appropriations Act.

Notes: HASC is House Armed Services Committee; **SASC** is Senate Armed Services Committee; **HAC** is House Appropriations Committee; **SAC** is Senate Appropriations Committee; **Conf.** is conference agreement.

Legislative Activity for FY2018

Summary of Action on FY2018 MDA Funding Request

Table 4 summarizes congressional action on the FY2018 request for MDA procurement and research and development funding for the Aegis BMD program.

Note: **Table 4** does **not** include funding for the Aegis BMD program provided in the DOD Missile Defeat and Defense Enhancements Appropriations Act, 2018 (Division B of H.R. 1370/P.L. 115-96). For details on the funding provided by Division B of H.R. 1370/P.L. 115-96, see the narrative discussion below of that act.

Table 4. Summary of Congressional Action on FY2018 Request for MDA Procurement and RDT&E Funding for Aegis BMD Program

(In millions of dollars, rounded to nearest tenth; totals may not add due to rounding)

4: 1 6 :: 1	Original	Amended	Authorization			Appropriation		
(Line numbers are for original request of May 2017/amended request of November 6, 2017)	request of May 2017	of May November	HASC	SASC	Conf.	НАС	SAC	Conf.
Procurement								
Aegis BMD (line 28/31)	425.0	876.0	583.0	425.0	876.0	512.6	987.3	632.4
Aegis BMD advance procurement (line 29/32)	38.7	38.7	38.7	38.7	38.7	38.7	38.7	0
Aegis Ashore Phase III (line 33/37)	59.7	59.7	59.7	59.7	59.7	59.7	59.7	74.7
Aegis BMD hardware and software (line 35/39)	160.3	160.3	160.3	160.3	160.3	157.1	160.3	187.1
Subtotal Procurement	683.7	1,134.7	841.7	683.7	1,134.7	768. I	1,246.0	894.2
Research, development, test, and evalu	uation (RD	Г&Е)						
Aegis BMD (PE 0603892C) (line 80/80)	852.1	860.8	852.1	852.1	860.8	779.3	757.7	810.2
Funding for SM-3 Block IIA test within BMD tests (PE 0603914C) (line 89/89)							0.9	4.4
Funding for SM-3 Block IIA test within BMD targets (PE 0603915C) (line 90/90)							33.7	47.2
Aegis BMD test (PE 0604878C) (line 108/108)	134.5	137.7	160.8	160.8	160.8	129.5	137.8	155.2
Funding for SM-3 Block IIA test within BMD sensor test (PE 0604879C) (line 109)							17.6	14.4
Land-based SM-3 (PE 0604880C) (line 110/110)	30.5	30.5	97.8	97.8	97.8	30.5	30.5	30.5
Aegis SM-3 IIA (PE 0604881C) (line 111/111)	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7
Subtotal RDT&E	1,026.8	1,038.8	1,120.4	1,120.4	1,129.1	949.0	987.9	1,071.6
TOTAL	1,710.5	2,173.5	1,962.1	1,804.1	2,263.8	1,717.1	2,233.9	1,965.8

Source: Table prepared by CRS based on DOD's original FY2018 budget submission, DOD's amended FY2018 budget submission of November 6, 2017, committee and conference reports, and explanatory statements on FY2018 National Defense Authorization Act and FY2018 DOD Appropriations Act.

Notes: HASC is House Armed Services Committee; **SASC** is Senate Armed Services Committee; **HAC** is House Appropriations Committee; **SAC** is Senate Appropriations Committee; **Conf.** is conference agreement. This table does **not** include funding for the Aegis BMD program provided in the DOD Missile Defeat and Defense Enhancements Appropriations Act, 2018 (Division B of H.R. 1370/P.L. 115-96). For details on the funding provided by Division B of H.R. 1370/P.L. 115-96, see the narrative discussion below of that act.

FY2018 National Defense Authorization Act (H.R. 2810/S. 1519 /P.L. 115-91)

House Committee Report

[NOTE: The discussion in this section uses the line numbers and requested funding levels from DOD's original FY2018 budget submission of May 2017.]

The House Armed Services Committee, in its report (H.Rept. 115-200 of July 6, 2017) on H.R. 2810, recommended the funding levels for the Aegis BMD program shown in the HASC column of **Table 4**. The recommended increase of \$158 million for Aegis BMD (line 28 in the Procurement, Defense Wide account) is for procuring 11 additional SM-3 Block IB interceptors (page 398). The recommended increase of \$26.351 million (relative to the amount originally requested in May 2017) for Aegis BMD Test (line 108 in the defense-wide research and development account) and the recommended increase of \$67.275 million for the land-based SM-3 (line 110 in the defense-wide research and development account) are to "provide AAW [anti-air warfare—that is, air-defense—capability] at Aegis Ashore sites, consistent w/ [with the] FY[20]16 and FY[20]17 NDAAs [National Defense Authorization Acts]." (Page 453)

Section 1685 of H.R. 2810 as reported states the following:

SEC. 1685. Defense of Hawaii from North Korean ballistic missile attack.

- (a) Findings; sense of Congress.—
- (1) FINDINGS.—Congress finds the following:
- (A) The North Korean ballistic missile threat to the United States, including Hawaii, is growing rapidly.
- (B) Since Kim Jong-un took power in 2012, North Korea has conducted 78 ballistic missile tests, of which 61 are considered to have been successful.
- (C) The existing ballistic missile defense protection for Hawaii, including the ground-based midcourse defense system in Alaska, and the sea-based x-band radar, provide limited ballistic missile defense capabilities today.
- (D) Through use of existing ballistic missile defense assets, including AN/TPY-2 radars and the Aegis Ashore Site located on the Pacific Missile Range Facility, the ballistic missile defense of Hawaii could benefit from a near-term improvement by adding a layer of defense.
- (E) The proposed program of record for a medium range discriminating radar to be fully mission capable after 2023 would leave the defense of Hawaii dependent only on the ground-based midcourse defense system in Alaska, and the sea-based x-band radar until that time, while the threat to the United States, including Hawaii, from North Korean ballistic missiles continues to grow.

- (F) The National Defense Authorization Act for Fiscal Year 2017 (Public Law 114–328) required that the Missile Defense Agency plan to provide additional ballistic missile defense sensor coverage for the defense of Hawaii and "field such radar or equivalent sensor by not later than December 31, 2021".
- (G) When asked at a hearing of the Committee on Armed Services of the House of Representatives on April 26, 2017, about the threat to Hawaii from North Korean ballistic missiles, the Commander of the United States Pacific Command, Admiral Harry Harris, testified that "Kim Jong-un is clearly in a position to threaten Hawaii today...I believe that our ballistic missile (defense) architecture is sufficient to protect Hawaii today. But it can be overwhelmed" and "I think that we would be better served, my personal opinion, is that we would be better served with a defensive Hawaii radar and interceptors in Hawaii. I know that is being discussed".
- (2) SENSE OF CONGRESS.—It is the sense of Congress that Congress supports assessing the feasibility of improving the missile defense of Hawaii from the evolving ballistic missile threat, including from North Korea, through a permanent missile defense sensor capability and the possible introduction of interim missile defense coverage.
- (b) Sequenced approach.—The Secretary of Defense shall protect the test and training operations of the Pacific Missile Range Facility, and assess the siting and functionality of a discrimination radar for homeland defense throughout the Hawaiian Islands before assessing the feasibility of improving the missile defense of Hawaii by using existing missile defense assets that could materially improve the defense of Hawaii.
- (c) Test.—The Director of the Missile Defense Agency shall—
- (1) not later than 270 days after the date of the enactment of this Act, conduct a test to evaluate and demonstrate, if technologically feasible, the capability to defeat a simple intercontinental ballistic missile threat using the standard missile 3 block IIA missile interceptor; and
- (2) as part of the integrated master test plan for the ballistic missile defense system, develop a plan to demonstrate a capability to defeat a complex intercontinental ballistic missile threat, including a complex threat posed by the intercontinental ballistic missiles of North Korea.
- (d) Report.—Not later than 120 days after the date of the enactment of this Act, the Secretary of Defense shall submit to the congressional defense committees a report—
- (1) that indicates whether demonstrating an intercontinental ballistic missile defense capability against North Korean ballistic missiles by the standard missile 3 block IIA missile interceptor poses any risks to strategic stability; and
- (2) if the Secretary determines under paragraph (1) that such demonstration poses such risks to strategic stability, a description of any plan developed and implemented by the Secretary to address and mitigate such risks, as determined appropriate by the Secretary.

Section 1686 of H.R. 2810 as reported states the following:

SEC. 1686. Aegis Ashore anti-air warfare capability.

- (a) Authorization.—Using funds authorized to be appropriated by sections 101 and 201 of this Act or otherwise made available for fiscal year 2018 for procurement and research, development, test, and evaluation, as specified in the funding tables in division D, the Secretary of Defense shall continue the development, procurement, and deployment of anti-air warfare capabilities at each Aegis Ashore site in Romania and Poland. The Secretary shall ensure the deployment of such capabilities—
- (1) at such sites in Romania by not later than one year after the date of the enactment of this Act; and

- (2) at such sites in Poland by not later than one year after the declaration of operational status for such sites.
- (b) Reprogramming and transfers.—Any reprogramming or transfer made to carry out subsection (a) shall be carried out in accordance with established procedures for reprogramming or transfers.

House Floor Action

On July 14, 2017, as part of its consideration of H.R. 2810, the House agreed to by voice vote H.Amdt. 195, an en bloc amendment that included, inter alia, amendment 107 as printed in H.Rept. 115-217 of July 13 (legislative day, July 12), 2017, on H.Res. 440, providing for the further consideration of H.R. 2810. Amendment 107, as summarized in H.Rept. 115-217, "Amends the bill for construction of the previously authorized AEGIS Ashore Missile Defense Complex at RedziKowo Base, Poland, the Secretary of the Navy may construct a 6,180 square meter multipurpose facility, for the purposes of providing additional berthing space on board the installation."

Senate Committee Report

[NOTE: The discussion in this section uses the line numbers and requested funding levels from DOD's original FY2018 budget submission of May 2017.]

The Senate Armed Services Committee, in its report (S.Rept. 115-125 of July 10, 2017) on S. 1519, recommended the funding levels for the Aegis BMD program shown in the SASC column of **Table 4**. The recommended increase of \$26.351 million for Aegis BMD Test (line 108 in the defense-wide research and development account) and the recommended increase of \$67.275 million for the land-based SM-3 (line 110 in the defense-wide research and development account) are for an unfunded requirement for anti-air warfare (i.e., air defense). (Pages 474-475)

Senate Floor Action

On September 18, 2017, as part of its consideration of H.R. 2810, the Senate agreed by unanimous consent to S.Amdt. 1073, which struck Section 1653 of H.R. 2810, relating to ground-based BMD interceptor capability, capacity, and reliability, and inserted a new Section 1653.

Within the newly inserted Section 1653, subsection (d) requires a report on "options to increase the capability, capacity, and reliability of the ground-based midcourse defense element of the ballistic missile defense system and the infrastructure requirements for increasing the number of ground-based interceptors in currently feasible locations across the United States." As stated in subsection (d)(2)(L), the report is to include, among other things, a discussion of "[t]he benefit of supplementing ground-based midcourse defense elements with other, more distributed, elements, including both Aegis ships and Aegis Ashore installations with Standard Missile-3 Block IIA and other interceptors in Hawaii and at other locations for homeland missile defense."

Conference

[NOTE: The discussion in this section uses the line numbers and requested funding levels from DOD's amended FY2018 budget submission of November 7, 2017.]

The conference report (H.Rept. 115-404 of November 9, 2017) on H.R. 2810/P.L. 115-91 of December 12, 2018, recommended the funding levels for the Aegis BMD program shown in the authorization conference column of **Table 4**. The recommended increase of \$23.036 million for Aegis BMD Test (line 108 in the defense-wide research and development account) is "to provide

AAW [anti-air warfare—i.e., air defense] at Aegis Ashore sites, consistent w/ [with the] FY[20]16 and FY[20]17 NDAAs." (Page 1209)

Section 1682 of the conference version of H.R. 2810 states the following:

SEC. 1682. Aegis Ashore anti-air warfare capability.

- (a) Authorization.—Subject to the availability of funds authorized to be appropriated by sections 101 and 201 of this Act or otherwise made available for fiscal year 2018 for procurement and research, development, test, and evaluation, as specified in the funding tables in division D, the Secretary of Defense shall continue the development, procurement, and deployment of anti-air warfare capabilities at each Aegis Ashore site in Romania and Poland. The Secretary shall ensure the deployment of such capabilities—
- (1) at such sites in Romania by not later than one year after the date of the enactment of this Act; and
- (2) at such sites in Poland by not later than one year after the declaration of operational status for such sites.
- (b) Reprogramming and transfers.—Any reprogramming or transfer made to carry out subsection (a) shall be carried out in accordance with established procedures for reprogramming or transfers.

DOD Missile Defeat and Defense Enhancements Appropriations Act, 2018 (Division B of H.R. 1370/P.L. 115-96)

As Enacted

Division B of H.R. 1370 as enacted (P.L. 115-96 of December 22, 2017) is the Department of Defense Missile Defeat and Defense Enhancements Appropriations Act, 2018. Within Division B, Title I provides funds for missile defeat and defense enhancements, and Title II provides military construction funding for a missile defense field in Alaska. Section 2002(a) of Division B states that funding appropriated in Title I shall be allocated according to an Administration budget amendment package dated November 6, 2017.

Title I of Division B explicitly provides \$673.5 million in the Operation and Maintenance, Navy (OMN) account for repairing the USS John S. McCain and the USS Fitzgerald.

Title I of Division B also provides \$1,239.14 million in the Procurement, Defense-Wide (PDW) account, \$1,010.22 million in the Research, Development, Test and Evaluation, Defense-Wide (RDT&EDW) account, and \$60.0 million in the Research, Development, Test and Evaluation, Navy (RDT&EN) account. The text of the November 6, 2017, budget amendment package suggests that this funding is for, among other things, the procurement of 16 SM-3 Block IIA interceptors.

Note: Funding provided for the Aegis BMD program by Division B of H.R. 1370/P.L. 115-96 is **not** included in **Table 4**.

FY2018 DOD Appropriations Act (Division A of H.R. 3219/S. XXXX/Division C of H.R. 1625/P.L. 115-141)

House

[NOTE: The discussion in this section uses the line numbers and requested funding levels from DOD's original FY2018 budget submission of May 2017.]

H.R. 3219 as reported by the House Appropriations Committee (H.Rept. 115-219 of July 13, 2017) was the FY2018 DOD Appropriations Act. H.R. 3219 as passed by the House is called the Make America Secure Appropriations Act, 2018. H.R. 3219 as passed by the House includes the FY2018 DOD Appropriations Act as Division A and four other appropriations acts as Divisions B through E. The discussion below relates to Division A.

The House Appropriations Committee, in its report (H.Rept. 115-219 of July 13, 2017) on H.R. 3219, recommended the funding levels for the Aegis BMD program shown in the HAC column of **Table 4**.

The recommended net increase of \$87.544 million for Aegis BMD (line 28 in the Procurement, Defense Wide account) includes an increase of \$107.75 million for "Program increase—ten interceptors and associated canisters," a reduction of \$5 million for "Insufficient budget justification," a reduction of \$3.546 million for "Tools and test equipment unjustified request," and a reduction of \$11.66 million for "Systems engineering and integration unjustified request." (Page 207)

The recommended reduction of \$72.725 million for Aegis BMD (line 80 in the defense-wide research and development account) includes a reduction of \$31.451 million for "Aegis ballistic missile defense 6.x development excess growth" and a reduction of \$41.274 million for "SM-3 IIA all up rounds." (Page 270) The recommended reduction of \$5 million for Aegis BMD Test (line 108 in the defense-wide research and development account) is for "Flight test delays carryover." (Page 270)

Senate

[NOTE: The discussion in this section uses the line numbers from DOD's original FY2018 budget submission of May 2017 and the requested funding levels from DOD's amended FY2018 budget submission of November 7, 2017.]

On November 21, 2017, the Senate Appropriations Committee released a chairman's recommendation and explanatory statement for the FY2018 DOD Appropriations Act, referred to here as S. XXXX. The explanatory statement recommended the funding levels shown in the SAC column of **Table 4**.

In the explanatory statement, procurement funding is divided between tables on pages 145 and 264, and research and development funding is divided between tables on 191 and 265-266.

The recommended increase of \$111.2 million in procurement funding for Aegis BMD (line 28) includes an increase of \$41.2 million for "Transfer: SM-3 IIA interceptors-transfer from RDDW [research and development, defense-wide account] for AUR [all-up round] full funding" and an increase of \$70 million for "Program increase: Fully fund 4 SM-3 Block IIA AUR [all-up rounds]." (Page 147)

The recommended net decrease of \$103.0 million in research and development funding for Aegis BMD (PE 0603892C) (line 80) includes an increase of \$2.7 million for "Program increase:

THAAD/Patriot JEON Phase I–III," a reduction of \$41.2 million for "SM–3 Block IIA All Up Rounds—transfer to Procurement, Defense-wide for All Up Round interceptor procurement," and a reduction of \$64.5 million for "Aegis ballistic missile defense 6.x development unjustified growth." (Page 195)

The \$0.9 million in research and development funding for an SM-3 Block IIA test within BMD Test (PE 0603914C) (line 89), the \$33.7 million in research and development funding for an SM-3 Block IIA test within BMD targets (PE 0603915C) (line 90), and the \$17.6 million in research and development funding for an SM-3 Block IIA test within BMD sensor test (PE 0604879C) (line 109) are shown on page 266 of the explanatory statement.

The explanatory statement also shows a recommended reduction of \$10 million in research and development funding for "Aegis Ashore unjustified program growth" within BMD Enabling Programs (PE 0603890C) (line 78). (Page 195) Line 78 is not shown in **Table 4**.

The explanatory statement states the following:

Standard Missile Program Inventory and Acquisition Objectives.—In fiscal year 2017, in Senate Report 114–263 and in House Report 114–577, the Director, Missile Defense Agency, in coordination with the Assistant Secretary of the Navy (Research, Development and Acquisition), was directed to provide to the congressional defense committees an acquisition objective for the SM–3 Block IB and Block IIA missile programs. The Committee has reviewed the report and finds it unnecessarily vague and not helpful in determining overall program requirements and acquisition strategies, managing the industrial base or controlling costs.

The Committee understands that the Department of Defense is considering a multiyear procurement proposal for certain variants of the Standard Missile family, and believes that understanding inventory and acquisition objectives for all Standard Missile variants should be part of any such consideration. Therefore, the Committee directs the Director, Missile Defense Agency, in coordination with the Deputy Chief of Naval Operations for Warfare Systems, to provide with the fiscal year 2019 President's budget submission an unclassified report with a classified annex detailing inventory and acquisition objectives for all elements of the Standard Missile portfolio by variant. Further, the Under Secretary of Defense (Comptroller), in coordination with the Missile Defense Agency Director for Operations and the Assistant Secretary of the Navy (Financial Management and Comptroller), is directed to certify in writing to the congressional defense committees that the fiscal year 2019 President's budget program submission fully funds Standard Missile requirements in support of inventory and acquisition objectives identified in the aforementioned report. (Page 66)

The explanatory statement also states the following:

Surface Combatant Combat Systems Engineering.—The fiscal year 2018 President's budget request includes \$390,238,000, an increase of \$114,474,000 over amounts enacted in fiscal year 2017, for further development and integration of modifications to the AEGIS Weapon System. The Committee notes the significant capabilities the AEGIS combat system provides to the warfighter, to include countering current and expected future air, ballistic missile, surface and sub-surface threats. However, the Committee is concerned by the repeated annual programmatic, fiscal, and schedule perturbations in the Navy's program. Further, the Committee is concerned by the apparent disconnect between the Navy and the Missile Defense Agency regarding Aegis baselines with Integrated Air and Missile Defense Capability, to include nomenclature, schedules, as well as joint and unique funding requirements. The Committee encourages the Navy and Missile Defense Agency to improve joint program efforts regarding the Aegis Integrated Air and Missile Defense Capability. (Page 173)

Conference

The FY2018 DOD Appropriations Act was enacted as Division C of H.R. 1625/P.L. 115-141 of March 23, 2018, the Consolidated Appropriations Act, 2018. The explanatory statement for Division C of H.R. 1625 provides the funding levels shown in the appropriations conference column of **Table 4**.

Note: **Table 4** does **not** include funding for the Aegis BMD program provided in the DOD Missile Defeat and Defense Enhancements Appropriations Act, 2018 (Division B of H.R. 1370/P.L. 115-96). For details on the funding provided by Division B of H.R. 1370/P.L. 115-96, see the narrative discussion above of that act.

Regarding procurement funding:

- The net increase of \$207.335 million for Aegis BMD (line 28) includes a reduction of \$2.546 million for "Tools and test equipment unjustified request," a reduction of \$9.116 million for "Systems engineering and integration unjustified request," an increase of \$107.75 million for "Program increase—ten interceptors and associated canisters," an increase of \$41.247 million for "SM-3 IIA interceptors—transfer all up rounds full funding from RDTE,DW line 80" [see research, development, test, and evaluation funding below], and an increase of \$70 million for "Program increase—fully fund four SM-3 Block IIA all up rounds." (PDF page 218 of 391)
- The reduction of \$38.7 million (a reduction to zero) for Aegis BMS Advance Procurement (line 29) is for "Advance procurement early to need." (PDF page 218 of 391)
- The increase of \$15.0 million for Aegis Ashore Phase III (line 33) is for "Program increase—Aegis Ashore Poland." (PDF page 218 of 391)
- The net increase of \$26.74 million for Aegis BMD hardware and software (line 35) includes a reduction of \$3.26 million for "MDA PNT 4650.05 unjustified request," and an increase of \$30 million for "Program increase—FTM-29 flight test repeat" (PDF page 218 of 391)

Regarding research, development, test, and evaluation funding:

- The net reduction of \$41.898 million for Aegis BMD (line 80) includes a reduction of \$31.451 million for "Aegis ballistic missile defense 6.x development excess growth," a reduction of \$41.247 million for "SM-3 IIA all up rounds—transfer to P,DW line 28" [see procurement funding above], an increase of \$10.8 million for "Program increase—FTM-29 flight test repeat," and an increase of \$20.0 million for "Program increase—Aegis Ashore Poland." (PDF page 293 of 391)
- The increase of \$4.4 million in BMD tests (line 89) is for "Program increase—FTM-29 flight test repeat." (PDF page 293 of 391)
- The increase of \$47.2 million in BMD targets (line 90) is for "Program increase—FTM-29 flight test repeat." (PDF page 293 of 391)
- The net increase of \$20.7 million for Aegis BMD test (line 108) includes a reduction of \$5.0 million for "Flight test delays carryover," and an increase of \$25.7 million for "Program increase—FTM-29 flight test repeat." (PDF page 294 of 391)

• The \$14.4 million increase in BMD sensor test (line 109) is for "Program increase—FTM-29 flight test repeat." (PDF page 294 of 391)

Appendix A. Aegis BMD Flight Tests

This appendix presents additional background information on Aegis BMD flight tests.

Summary of Test Flights

Table A-1 presents a summary of Aegis BMD flight tests since January 2002. As shown in the table, since January 2002, the Aegis BMD system has achieved 30 successful exo-atmospheric intercepts in 39 attempts using the SM-3 missile (including 3 successful intercepts in 4 attempts by Japanese Aegis ships, and one successful intercept in two attempts attempt using the Aegis Ashore system), and 7 successful endo-atmospheric intercepts in 7 attempts using the SM-2 Block IV and SM-6 missiles, making for a combined total of 37 successful intercepts in 46 attempts.

In addition, on February 20, 2008, a BMD-capable Aegis cruiser operating northwest of Hawaii used a modified version of the Aegis BMD system with the SM-3 missile to shoot down an inoperable U.S. surveillance satellite that was in a deteriorating orbit. ⁴³ Including this intercept in the count increases the totals to 31 successful exo-atmospheric intercepts in 40 attempts using the SM-3 missile, and 38 successful exo- and endo-atmospheric intercepts in 47 attempts using SM-3, SM-2 Block IV, and SM-6 missiles.

MDA states that the incremental cost of the shoot-down operation was \$112.4 million when all costs are included. MDA states that this cost is to be paid by MDA and the Pacific Command (PACOM), and that if MDA is directed to absorb the entire cost, "some realignment or reprogramming from other MDA [program] Elements may be necessary to lessen significant adverse impact on [the] AEGIS [BMD program's] cost and schedule." (MDA information paper dated March 7, 2008, provided to CRS on June 6, 2008. See also Jason Sherman, "Total Cost for Shoot-Down of Failed NRO Satellite Climbs Higher," *InsideDefense.com*, May 12, 2008.)

_

⁴³ The modifications to the ship's Aegis BMD midcourse system reportedly involved primarily making changes to software. DOD stated that the modifications were of a temporary, one-time nature. Three SM-3 missiles reportedly were modified for the operation. The first modified SM-3 fired by the cruiser successfully intercepted the satellite at an altitude of about 133 nautical miles (some sources provide differing altitudes). The other two modified SM-3s (one carried by the cruiser, another carried by an engage-capable Aegis destroyer) were not fired, and the Navy stated it would reverse the modifications to these two missiles. (For additional information, see the MDA discussion available online at http://www.mda.mil/system/aegis_one_time_mission.html, and also Peter Spiegel, "Navy Missile Hits Falling Spy Satellite," *Los Angeles Times*, February 21, 2008; Marc Kaufman and Josh White, "Navy Missile Hits Satellite, Pentagon Says," *Washington Post*, February 21, 2008; Thom Shanker, "Missile Strikes A Spy Satellite Falling From Its Orbit," *New York Times*, February 21, 2008; Bryan Bender, "US Missile Hits Crippled Satellite," *Boston Globe*, February 21, 2008; Zachary M. Peterson, "Navy Hits Wayward Satellite On First Attempt," *NavyTimes.com*, February 21, 2008; Dan Nakaso, "Satellite Smasher Back At Pearl," *Honolulu Advertiser*, February 23, 2008; Zachary M. Peterson, "Lake Erie CO Describes Anti-Satellite Shot," *NavyTimes.com*, February 25, 2008; Anne Mulrine, "The Satellite Shootdown: Behind the Scenes," *U.S. News & World Report*, February 25, 2008; Nick Brown, "US Modified Aegis and SM-3 to Carry Out Satellite Interception Shot," *Jane's International Defence Review*, April 2008: 35.)

Table A-I.Aegis BMD Flight Tests From January 2002 to the Present

		Name of flight test of			Cumulative	Cumulative
Date	Country	exercise	Ballistic Missile Target	Successful?	successes	attempts
Exo-atmo	spheric (using SM-	·3 missile)			<u></u>	<u></u>
1/25/02	US	FM-2	Unitary short-range (TTV)	Yes	1	1
6/13/02	US	FM-3	Unitary short-range (TTV)	Yes	2	2
11/21/02	US	FM-4	Unitary short-range (TTV)	Yes	3	3
6/18/03	US	FM-5	Unitary short-range (TTV)	No	3	4
12/11/03	US	FM-6	Unitary short-range (TTV)	Yes	4	5
2/24/05	US	FTM 04-I (FM- 7)	Unitary short-range (TTV)	Yes	5	6
11/17/05	US	FTM 04-2 (FM- 8)	Separating short-range (MRT)	Yes	6	7
6/22/06	US	FTM 10	Separating short-range (TTV)	Yes	7	8
12/7/06	US	FTM II	Unitary short-range (TTV)	No	7	9
4/26/07	US	FTM II Event 4	Unitary short-range (ARAV-A)	Yes	8	10
6/22/07	US	FTM 12	Separating short-range (MRT)	Yes	9	11
8/31/07	US	FTM-11a	Classified	Yes	10	12
11/6/07	US	FTM 13	Unitary short-range (ARAV-A)	Yes	11	13
			Unitary short-range (ARAV-A)	Yes	12	14
12/17/07	Japan	JFTM-I	Separating short-range (MRT)	Yes	13	15
11/1/08	US	Pacific Blitz	Unitary short-range (ARAV-A)	Yes	14	16
			Unitary short-range (ARAV-A)	No	14	17
11/19/08	Japan	JFTM-2	Separating short-range (MRT)	No	14	18
7/30/09	US	FTM-17	Unitary short-range (ARAV-A)	Yes	15	19
10/27/09	Japan	JFTM-3	Separating short-range (MRT)	Yes	16	20
10/28/10	Japan	JFTM-4	Separating short-range (MRT)	Yes	17	21
4/14/11	US	FTM-15	Separating intermediate range (LV-2)	Yes	18	22
9/1/11	US	FTM-16 E2	Separating short-range (ARAV-B)	No	18	23
5/9/12	US	FTM-16 E2a	Unitary short-range (ARAV-A)	Yes	19	24
6/26/12	US	FTM-18	Separating short-range (MRT)	Yes	20	25
10/25/12	US	FTI-01	Separating short-range (ARAV-B)	No	20	26
2/12/13	US	FTM-20	Separating medium-range (MRBM-T3)	Yes	21	27
5/15/13	US	FTM-19	Separating short-range (ARAV-C)	Yes	22	28
9/10/13	US	FTO-01	Separating medium-range (eMRBM-TI)	Yes	23	29
9/18/13	US	FTM-21	Separating short-range (ARAV-C++)	Yes	24	30
10/3/13	US	FTM-22	Separating medium-range (ARAV-TTO-E)	Yes	25	31
11/6/14	US	FTM-25	Separating short-range (ARAV-B)	Yes	26	32
6/25/15	US	FTO-02 EI	Separating medium-range (IRBM TI)	n/aª	26	32
10/4/15	US	FTO-02 E2	Separating medium-range (eMRBM)	n/a ^b	26	32
10/20/15	US	ASD-15 E2	Separating short-range (Terrier Orion)	Yes	27	33
11/1/15	US	FTO-02 E2a	Separating medium-range (eMRBM)	No	27	34
12/10/15	US (Aegis Ashore)	FTO02 E1a	Separating medium-range (IRBM TI)	Yes	28	35
2/3/17	US-Japan	SFTM-01	Separating medium-range (MRT)	Yes	29	36
6/21/17	US-Japan	SFTM-02	Medium-range	No	29	37
10/15/17	US	FS17	Medium-range target	Yes	30	38
1/31/18	US (Aegis Ashore)	FTM-29	Intermediate-range target	No	30	39
			IV missile and [for MMW Event I] SM			

Congressional Research Service

Date	Country	Name of flight test of exercise	Ballistic Missile Target	Successful?	Cumulative successes	Cumulative attempts
5/24/06	US	Pacific Phoenix	Unitary short-range target (Lance)	Yes	I	I
6/5/08	US	FTM-14	Unitary short-range target (FMA)	Yes	2	2
3/26/09	US	Stellar Daggers	Unitary short-range target (Lance)	Yes	3	3
7/28/15	US	MMW EI	Unitary short-range target (Lance)	Yes	4	4
7/29/15	US	MMW E2	Unitary short-range target (Lance)	Yes	5	5
12/14/16	US	FTM-27	Unitary short-range target (Lance)	Yes	6	6
8/29/17	US	FTM-27 E2	Medium-range target (MRBM)	Yes	7	7
Combined total for exo- and endo-atmospheric above tests					37	46

Sources: Table presented in MDA fact sheet, "Aegis Ballistic Missile Defense Testing," February 2017, accessed on October 16, 2017, at https://www.mda.mil/global/documents/pdf/aegis_tests.pdf, and (for flight tests subsequent to February 2017) MDA news releases.

Notes: TTV is target test vehicle; **ARAV** is Aegis Readiness Assessment Vehicle. In addition to the flight tests shown above, there was a successful use of an SM-3 on February 20, 2008, to intercept an inoperative U.S. satellite—an operation called Burnt Frost. Including this intercept in the count increases the totals to 31 successful exo-atmospheric intercepts in 40 attempts using the SM-3 missile, and 38 successful exo- and endo-atmospheric intercepts in 47 attempts using SM-3, SM-2 Block IV, and SM-6 missiles.

- a. MDA's table shows this as a test that did not result in the launch of an SM-3. MDA as of August 3, 2015, had not issued a news release discussing this event. MDA's count of 31 successful intercepts in 37 launches through July 29, 2015, does not appear to include this test, suggesting that this was considered a "no test" event—a test in which there was a failure that was not related to the Aegis BMD system or the SM-3 interceptor. News reports state that the test was aborted due to a failure of the target missile. (Andrea Shalal, "U.S. Skips Aegis Ashore Missile Test After Target Malfunction," Reuters, June 26, 2015.) MDA's table similarly shows the test of December 7, 2006, as a test that did not result in the launch of an SM-3. MDA issued a news release on this test, which stated that an SM-3 was not launched "due to an incorrect system setting aboard the Aegis-class cruiser USS Lake Erie prior to the launch of two interceptor missiles from the ship. The incorrect configuration prevented the fire control system aboard the ship from launching the first of the two [SM-3] interceptor missiles. Since a primary test objective was a near-simultaneous launch of two missiles against two different targets, the second interceptor missile was intentionally not launched." MDA counts the test of December 7, 2006, as an unsuccessful intercept in its count of 31 successful intercepts in 37 launches through July 29, 2015.
- b. MDA's table shows this as a test that did not result in the launch of an SM-3. MDA as of November 10, 2015, had not issued a news release discussing this event. MDA's count of 32 successful intercepts in 39 launches through November 1, 2015, does not appear to include this test, suggesting that this was considered a "no test" event—a test in which there was a failure that was not related to the Aegis BMD system or the SM-3 interceptor.

May 2010 Criticism of Claimed Successes in Flight Tests

In a May 2010 magazine article and supplementary white paper, two professors with scientific backgrounds—George Lewis and Theodore Postol—criticized DOD claims of successes in Aegis (and other DOD) BMD flight tests, arguing that

the Defense Department's own test data show that, in combat, the vast majority of "successful" SM-3 experiments would have failed to destroy attacking warheads. The data also show potential adversaries how to defeat both the SM-3 and the GMD [ground-based missile defense] systems, which share the same serious flaws that can be readily exploited by adversaries. 44

⁴⁴ George N. Lewis and Theodore A. Postol, "A Flawed and Dangerous U.S. Missile Defense Plan," *Arms Control Today*, May 2010: 24-32. The quoted passage appears on p. 26. The associated white paper is George N. Lewis and Theodore A. Postol, *A Technically Detailed Description of Flaws in the SM-3 and GMD Missile Defense Systems* (continued...)

The criticisms made by Lewis and Postol were reported in a May 18, 2010, *New York Times* article. ⁴⁵ In response to the criticisms and the *New York Times* article, MDA issued a press release and other information defending the flight tests and arguing that the criticisms are based on inaccurate or incomplete information. ⁴⁶

Details on Selected Exo-Atmospheric (SM-3) Flight Tests Since June 2006

June 22, 2006, Test. This was the first test to use the 3.6 version of the Aegis BMD system.⁴⁷

December 7, 2006, Test. This was the first unsuccessful flight test since June 2003. MDA stated that the ninth test

was not completed due to an incorrect system setting aboard the Aegis-class cruiser USS Lake Erie prior to the launch of two interceptor missiles from the ship. The incorrect configuration prevented the fire control system aboard the ship from launching the first of the two interceptor missiles. Since a primary test objective was a near-simultaneous launch of two missiles against two different targets, the second interceptor missile was intentionally not launched.

The planned test was to involve the launch of a Standard Missile 3 against a ballistic missile target and a Standard Missile 2 against a surrogate aircraft target. The ballistic missile target was launched from the Pacific Missile Range Facility, Kauai, Hawaii and the aircraft target was launched from a Navy aircraft. The USS Lake Erie (CG 70), USS Hopper (DDG 70) and the Royal Netherlands Navy frigate TROMP were all successful in detecting and tracking their respective targets. Both targets fell into the ocean as planned.

After a thorough review, the Missile Defense Agency and the U.S. Navy will determine a new test date. 48

A news article about the ninth test stated the following:

"You can say it's seven of nine, rather than eight of nine," Missile Defense Agency spokesman Chris Taylor said of the second failure in tests of the system by the agency and the Navy....

The drill was planned to demonstrate the Navy's ability to knock down two incoming missiles at once from the same ship.

_

Revealed by the Defense Department's Ballistic Missile Test Data, May 3, 2010, 13 pp.

^{(...}continued)

⁴⁵ William J. Broad and David E. Sanger, "Review Cites Flaws In U.S. Antimissile Program," New York Times, May 18, 2010: 1.

⁴⁶ Missile Defense Agency, "Missile Defense Agency Responds to New York Times Article," May 18, 2010 (10-NEWS-0005); Missile Defense Agency, *Missile Defense Agency Response to Request for Information, Standard Missile – 3 Interceptor Testing*, May 18, 2010, 2 pp.; Missile Defense Agency, *Missile Defense Agency Response to Request for Information, Response to New York Times May 18, 2010, Article Regarding SM-3 Testing*, May 18, 2010, 3 pp.; Richard Lehner, "Missile Defense Agerncy Responds to New York Times Article," *DOD Live* (http://www.dodlive.mil), May 18, 2010; Transcript of Department of Defense Bloggers Roundtable With Richard Lehner, Spokesman, Missile Defense Agency (MDA), Subject: Standard Missile 3 Test Program, May 18, 2010.

⁴⁷ Missile Defense Agency, "Missile Defense Test Results in Successful 'Hit To Kill' Intercept," June 22, 2006 (06-NEWS-0018).

⁴⁸ Untitled Missile Defense Agency "For Your Information" statement dated December 7, 2006 (06-FYI-0090).

"In a real world situation it is possible, maybe even probable, that in addition to engaging a ballistic missile threat that was launched, you may be engaging a surface action," said Joe Rappisi before the test. He is director for the Aegis Ballistic Missile Defense system at Lockheed Martin, the primary contractor for the program.

The test would have marked the first time a ship has shot down one target in space and another target in the air at the same time.

The test presented a greater challenge to the ship's crew and the ballistic missile defense system than previous tests, Rappisi said. The multiple target scenario is also closer to what sailors might actually face in battle.

The U.S. Pacific Fleet has been gradually installing missile surveillance and tracking technology on many of its destroyers and cruisers amid concerns about North Korea's long-range missile program.

It is also installing interceptor missiles on many of its ships, even as the technology to track and shoot down incoming missiles is being developed and perfected.

The Royal Netherlands Navy joined the tracking and monitoring off Kauai to see how its equipment works. The Dutch presence marked the first time a European ally has sent one of its vessels to participate in a U.S. ballistic missile defense test. 49

A subsequent news article stated the following:

the test abort of the Aegis Ballistic Missile Defense system Dec. 7 resulted from human error, [MDA Director USAF Lt. Gen. Henry] Obering says.... Both the ballistic missile and aircraft targets launched as planned, but the first interceptor failed to fire because an operator had selected an incorrect setting for the test. Officials then aborted before the second could boost.

Aegis missile defense system tests are at a standstill until officials are able to identify an appropriate ballistic missile target. The one used Dec. 7 was the last of its kind, Obering says, leaving them empty handed in the near future.⁵⁰

Another article stated the following:

Philip Coyle, a former head of the Pentagon's testing directorate, gives the Navy credit for "discipline and successes so far" in its sea-based ballistic missile defense testing program. Coyle is now a senior adviser at the Center for Defense Information.

"The U.S. Navy has an enviable track record of successful flight intercept tests, and is making the most of its current, limited Aegis missile defense capabilities in these tests," Coyle told [Inside the Navy] Dec. 7.

"Difficulties such as those that delayed the latest flight intercept attempt illustrate the complexity of the system, and how everything must be carefully orchestrated to achieve success," Coyle added. "Nevertheless, this particular setback won't take the Navy long to correct." ⁵¹

April 26, 2007, Test. MDA states that this test:

involved the simultaneous engagements of a ballistic missile "unitary" target (meaning that the target warhead and booster remain attached) and a surrogate hostile air target....

⁴⁹ David Briscoe, "Test Interceptor Missile Fails To Launch," *NavyTimes.com*, December 8, 2006.

⁵⁰ Amy Butler, "GMD Trial Delayed Until Spring; Aegis Failure Human Error," *Aerospace Daily & Defense Report*, December 19, 2006.

⁵¹ Zachary M. Peterson, "Sea-Based Missile Defense Test Fails Due To 'Incorrect Configuration," *Inside the Navy*, December 11, 2006.

The test demonstrated the [Aegis ship's] ability to engage a ballistic missile threat and defend itself from attack at the same time. The test also demonstrated the effectiveness of engineering, manufacturing, and mission assurance changes in the solid divert and attitude control system (SDACS) in the kinetic kill weapon. This was the first flight test of all the SM-3 Block IA's upgrades, previously demonstrated in ground tests. ⁵²

A press report on the test stated that the hostile air target was an anti-ship cruise missile. The article stated that the scenario for the test

called for the [Aegis ship] to come under attack from a cruise missile fired by an enemy plane.... A Navy plane fired the cruise missile target used in the test. 53

June 22, 2007, Test. MDA states that this test

was the third intercept involving a separating target and the first time an Aegis BMD-equipped destroyer was used to launch the interceptor missile. The USS Decatur (DDG 73), using the operationally-certified Aegis Ballistic Missile Defense Weapon System (BMD 3.6) and the Standard Missile-3 (SM-3) Block IA missile successfully intercepted the target during its midcourse phase of flight....

An Aegis cruiser, USS Port Royal (CG 73), a Spanish frigate, MÉNDEZ NÚÑEZ (F-104), and MDA's Terminal High Altitude Area Defense (THAAD) mobile ground-based radar also participated in the flight test. USS Port Royal used the flight test to support development of the new Aegis BMD SPY-1B radar signal processor, collecting performance data on its increased target detection and discrimination capabilities. MÉNDEZ NÚÑEZ, stationed off Kauai, performed long-range surveillance and track operations as a training event to assess the future capabilities of the F-100 Class. The THAAD radar tracked the target and exchanged tracking data with the Aegis BMD cruiser.

This event marked the third time that an allied military unit participated in a U.S. Aegis BMD test, with warships from Japan and the Netherlands participating in earlier tests.⁵⁴

August 31, 2007, Test. MDA has publicly noted the occurrence of this test and the fact that it resulted in a successful intercept, ⁵⁵ but states that the details about the test are classified. ⁵⁶ MDA does not appear to have issued a news release about this flight test following the completion of the test, as it has for other Aegis BMD flight tests. ⁵⁷

November 6, 2007, Test. MDA states that this test involved:

⁵² Missile Defense Agency, "Successful Sea-Based Missile Defense 'Hit to Kill' Intercept," April 26, 2007 (07-NEWS-0032).

⁵³ Audrey McAyoy, "Aegis Missile Test Successful," *NavyTimes.com*, April 27, 2007.

⁵⁴ Missile Defense Agency, "Sea-Based Missile Defense 'Hit to Kill' Intercept Achieved," June 22, 2007 (07-NEWS-0037).

⁵⁵ See for example, slide 8 in the 20-slide briefing entitled "Ballistic Missile Defense Program Overview For The Congressional Breakfast Seminar Series," dated June 20, 2008, presented by Lieutenant General Trey Obering, USAF, Director, Missile Defense Agency. Source for briefing: *InsideDefense.com* (subscription required). Each slide in the briefing includes a note indicating that it was approved by MDA for public release on June 13, 2008. Slide 8 lists Aegis BMD midcourse flight tests conducted since September 2005, including a test on August 31, 2007. The slide indicates with a check mark that the flight test was successful. A success in this test is also needed to for the total number of successful intercepts to match the reported figure.

⁵⁶ An email from MDA to CRS dated June 30, 2008, states that the flight test "was a hit to kill intercept test but details about the test are classified."

⁵⁷ MDA's website, when accessed on June 30, 2008, did not show a news release issued on or soon after August 31, 2007, that discusses this test.

a multiple simultaneous engagement involving two ballistic missile targets.... For the first time, the operationally realistic test involved two unitary "non-separating" targets, meaning that the target's warheads did not separate from their booster rockets....

At approximately 6:12 p.m. Hawaii Standard Time (11:12 p.m. EST), a target was launched from the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai, Hawaii. Moments later, a second, identical target was launched from the PMRF. The USS Lake Erie's Aegis BMD Weapon System detected and tracked the targets and developed fire control solutions.

Approximately two minutes later, the USS Lake Erie's crew fired two SM-3 missiles, and two minutes later they successfully intercepted the targets outside the earth's atmosphere more than 100 miles above the Pacific Ocean and 250 miles northwest of Kauai....

A Japanese destroyer also participated in the flight test. Stationed off Kauai and equipped with the certified 3.6 Aegis BMD weapon system, the guided missile destroyer JS Kongo performed long-range surveillance and tracking exercises. The Kongo used the test as a training exercise in preparation for the first ballistic missile intercept test by a Japanese ship planned for later this year. This event marked the fourth time an allied military unit participated in a U.S. Aegis BMDS test. ⁵⁸

December 17, 2007, Test. In this flight test, a BMD-capable Japanese Aegis destroyer used an SM-3 Block IA missile to successfully intercept a ballistic missile target in a flight test off the coast of Hawaii. It was the first time that a non-U.S. ship had intercepted a ballistic missile using the Aegis BMD system.⁵⁹

November 1, 2008, Test. This flight test was reportedly the first U.S. Navy Aegis BMD flight test conducted by the Navy, without oversight by MDA. The test involved two Aegis ships, each attempting to intercept a ballistic missile. The SM-3 fired by the first Aegis ship successfully intercepted its target, but the SM-3 fired by the second Aegis ship did not intercept its target. A press release from the U.S. Third Fleet (the Navy's fleet for the Eastern Pacific) states that

Vice Adm. Samuel J. Locklear, Commander, U.S. Third Fleet announced today the successful Navy intercept of a ballistic missile target over the Pacific Ocean during Fleet Exercise Pacific Blitz. This was the first Fleet operational firing to employ the Standard Missile-3 (SM-3) against a ballistic missile target. Command and control of this mission resided with Commander, U.S. Third Fleet, based in San Diego, Calif.

Pearl Harbor-based Aegis destroyers, USS Paul Hamilton (DDG 60) and USS Hopper (DDG 70), which have been upgraded to engage ballistic missiles, fired SM-3 missiles at separate targets. During this event, a short-range ballistic missile target was launched from the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai, Hawaii. Upon detecting and tracking the target, USS Paul Hamilton, launched a SM-3 missile, resulting in a direct-hit intercept. Following USS Paul Hamilton's engagement, PMRF launched another target. USS Hopper successfully detected, tracked and engaged the target. The SM-3 followed a nominal trajectory, however intercept was not achieved. Extensive analysis of the flight mission will be used to improve the deployed Aegis BMD system. ⁶⁰

⁵⁸ Missile Defense Agency, "Sea-Based Missile Defense "Hit to Kill" Intercept Achieved," November 6, 2007 (07-NEWS-0051).

⁵⁹ John Liang, "Japanese Destroyer Shoots Down Ballistic Missile Test Target," *Inside Missile Defense*, December 19, 2007; "Japanese Aegis Destroyer Wins Test By Killing Target Missile With SM-3 Interceptor," *Defense Daily*, December 18, 2007; Reuters, "Japanese Ship Downs Missile In Pacific Test," *New York Times*, December 18, 2007: 8; Audrey McAvoy, "Japan Intercepts Missile In Test Off Hawaii," NavyTimes.com, December 17, 2007.

⁶⁰ Commander, U.S. Third Fleet, Public Affairs Office, press release 23-08, dated November 1, 2008, entitled "Navy Intercepts Ballistic Missile Target in Fleet Exercise Pacific Blitz." See also Dave Ahearn, "One of Two Missiles Hit In (continued...)

November 19, 2008, Test. This was the second Japanese flight test, and involved a single ballistic missile target. The test did not result in a successful intercept. MDA states that

Rear Admiral Tomohisa Takei, Director General of Operations and Plans, for the Japanese Maritime Staff Office (MSO), Japan Maritime Self Defense Force (JMSDF), and Lt. General Henry "Trey" Obering, United States Missile Defense Agency director, announced the completion today of a cooperative sea-based Aegis Ballistic Missile Defense intercept flight test off the coast of Kauai in Hawaii. The event, designated Japan Flight Test Mission 2 (JFTM-2), marked the second attempt by an Allied naval ship to intercept a ballistic missile target with the sea-based midcourse engagement capability provided by Aegis Ballistic Missile Defense. Target performance, interceptor missile launch and flyout, and operation of the Aegis Weapon System by the crew were successful, but an intercept was not achieved.

The JFTM-2 was a test of the newest engagement capability of the Aegis Ballistic Missile Defense configuration of the recently upgraded Japanese destroyer, JS CHOKAI (DDG-176). At approximately 4:21 pm (HST), 11:21 am (Tokyo time) a ballistic missile target was launched from the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii. JS CHOKAI crew members detected and tracked the target using an advanced on-board radar. The Aegis Weapon System then developed a fire control solution, and at approximately 4:24 pm (HST), 11:24 am (Tokyo time) on Nov 20, a single Standard Missile -3 (SM-3) Block IA was launched. Approximately two minutes later, the SM-3 failed to intercept the target. There is no immediate explanation for the failed intercept attempt. More information will be available after a thorough investigation. The JS CHOKAI crew performance was excellent in executing the mission. JFTM-2 was the second time that a Japanese ship was designated to launch the interceptor missile, a major milestone in the growing cooperation between Japan and the U.S. 61

A November 21, 2008, press report states that

An Aegis ballistic missile defense (BMD) test by the Japanese destroyer Chokai (DDG-176) ended in failure when the Standard Missile-3 Block 1A interceptor lost track of the target missile in the final seconds before a planned hit-to-kill.

The Chokai and its crew performed well throughout the test, and the SM-3 also performed flawlessly through its first three stages, according to Rear Adm. Brad Hicks, the U.S. Navy Aegis ballistic missile defense program director. He spoke with several reporters in a teleconference around midnight ET Wednesday-Thursday, after the test in the area of the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii.

This was the second Aegis BMD test failure in less than a month.

These latest two failures come as some Democrats in Congress are poised to cut spending on missile defense programs when they convene next year to consider the Missile Defense Agency budget for the fiscal year ending Sept. 30, 2010....

Still, in the coming money debates next year, missile defense advocates will be able to point out that even including the Hopper and Chokai failures, the record for the Aegis tests is an overwhelming 16 successful hits demolishing target missiles out of 20 attempts.

^{(...}continued)

Aegis Test; Navy For First Time Runs Test Instead of MDA," Defense Daily, November 4, 2008: 1-2.

⁶¹ Missile Defense Agency, "Japan/U.S. Missile Defense Flight Test Completed," November 19, 2008 (08-NEWS-0087).

Those successes included the first Japanese attempt. The Japanese destroyer Kongo (DDG-173) successfully used its SM-3 interceptor to kill a target missile. The difference in tests is that the Kongo crew was advised beforehand when the target missile would be launched, while the Chokai crew wasn't....

[Hicks] said a board will be convened to examine why the latest test failed. Hicks declined to speculate on why the SM-3 interceptor missed the target. "I'm confident we'll find out the root cause" of the Chokai interceptor failure to score a hit, he said.

However, he was asked by *Space & Missile Defense Report* whether the prior SM-3 successes make it unlikely the Chokai failure stems from some basic design flaw in all SM-3s, and whether it is more likely that the Chokai SM-3 failed because of some flaw or glitch in just that one interceptor.

Hicks said that is likely.

"Obviously, we believe this is hopefully related to this one interceptor," and doesn't reflect any basic design flaw in the SM-3 interceptors, he said.

The Chokai test failure cost Japan a \$55 million loss, he said, adding, "It wasn't cheap."...

In the Chokai test, the target missile was launched from Barking Sands, and about three minutes later the Chokai crew had spotted the target, the Aegis system had developed a tracking and hit solution, and the SM-3 interceptor was launched.

The first, second and third stages of the interceptor performed nominally, without problems, but then came the fourth stage. The nosecone components opened to expose the kill vehicle area, and somehow the program to track the target missile failed.

"It lost track," Hicks said, only seconds before the hit would have been achieved.

If the kill had occurred, it would have been about 100 nautical miles (roughly 115 statute miles) above Earth, and some 250 miles away from Barking Sands, Hicks said.

It took the interceptor about two minutes flight time to reach the near miss with the target missile.

Meanwhile, the Hamilton was nearby watching the test. The Hamilton Aegis system successfully spotted and tracked the target, and developed a simulated solution and simulated interceptor launch that, if it had been real, would have resulted in a successful hit on the target, Hicks said. The Hamilton didn't cue the Chokai, however. "It was strictly Chokai's engagement," Hicks said. ⁶²

In conjunction with the Missile Defense Agency (MDA), U.S. Pacific Fleet ships and

July 30, 2009, Test. MDA states that

crews successfully conducted the latest Aegis Ballistic Missile Defense (BMD) at-sea firing event on July 30. During this event, entitled Stellar Avenger, the Aegis BMD-equipped ship, USS Hopper (DDG 70), detected, tracked, fired and guided a Standard Missile -3 (SM-3) Block (Blk) IA to intercept a sub-scale short range ballistic missile. The target was launched from the Kauai Test Facility, co-located on the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai. It was the 19th successful intercept in 23 at-sea firings, for the Aegis BMD Program, including the February 2008 destruction of the malfunctioning satellite above the earth's atmosphere. Stellar Avenger was part of the continual evaluation of the certified and fielded Aegis BMD system at-sea today.

⁶² Dave Ahearn, "Japanese Aegis Missile Defense Test Fails, But Aegis Record Is 16 Hits In 20 Tries," Defense Daily, November 21, 2008: 5-6.

At approximately 5:40 pm (HST), 11:40 pm (EDT), a target was launched from PMRF. Three U.S. Navy Aegis BMD-equipped ships, the cruiser, USS Lake Erie (CG 70) and destroyers USS Hopper (DDG 70) and USS O'Kane (DDG 77) detected and tracked the target with their SPY radars. Each developed fire control solutions. At 5:42 pm (HST), 11:42 pm (EDT) the crew of USS Hopper fired one SM-3 Blk IA missile. The USS Hopper's Aegis BMD Weapon System successfully guided the SM-3 to a direct body to body hit, approximately two minutes after leaving the ship. The intercept occurred about 100 miles above the Pacific Ocean. USS O'Kane conducted a simulated engagement of the target. USS Lake Erie, with its recently installed upgraded Aegis BMD 4.0.1 Weapons System, detected and tracked the same target. 63

A July 31, 2009, press report states the following:

The test was the first Aegis BMD exercise to feature two versions of the software in a single event, according to Lisa Callahan, Lockheed's vice president for ballistic missile defense programs.

A goal of the exercises was to test the Aegis system's ability to discern all the different parts and pieces of a ballistic missile, Nick Bucci, Lockheed's director for Aegis BMD development programs, told reporters July 29 during a pre-exercise conference call.

Three more flight tests this fall will further test the system's discrimination capabilities, Bucci added, with each test becoming more complex. The last test will "be against a pretty darn complex target," he said.

The July 30 tests also validated fixes put in place after a BMD test last November involving a missile launched from the Aegis BMD Japanese destroyer Chokai failed to intercept its target, according to MDA spokesman Chris Taylor. The improvementswhich were successful in the most recent test—involved fixes to the Solid Divert Attitude Control System.

The Chokai is the second of four Japanese Aegis ships being upgraded with BMD capability. A third ship, the Myoko, is scheduled to carry out a BMD test this fall.⁶⁴

An August 3, 2009, press report states the following:

This test was added to the schedule to evaluate changes made after last year's failed attempt to intercept a target with an SM-3 Block IA launched by a Japanese Aegisequipped ship After the Nov. 19 test, MDA officials said, "Target performance, interceptor missile launch and flyout, and operation of the Aegis Weapon System by the crew were successful, but an intercept was not achieved."

A root cause has not been identified, and an MDA spokesman did not say whether fixes have been made to hardware or operational procedures resulting from the failure review. It is also unclear why a subscale target was used in the July 30 trial.⁶⁵

An August 4, 2009, press report states the following:

[Rear Admiral Alan "Brad" Hicks, Aegis/SM-3 program manager for MDA], said that a November [2008] failure of an SM-3 Block IA... during a flight-test was attributable to poor adherence to processes on Raytheon's assembly line in Tucson, Ariz.

This was isolated to that missile, and it was the result of perturbations to the build process encountered when shifting from development to production operations.

⁶³ Missile Defense Agency, "Aegis Ballistic Missile Defense Test Successful," July 31, 2009 (09-News-0015).

⁶⁴ Christopher P. Cavas, "Aegis BMD Test Successful," *DefenseNews.com*, July 31, 2009.

⁶⁵ Amy Butler, "SM-3 Scores Hit After Fixes Implemented," Aerospace Daily & Defense Report, August 3, 2009: 5.

During the November test, a Japanese Aegis-equipped ship fired the interceptor and it flew "perfectly," Hicks said. In the endgame, a failure of the divert and attitude control system on the unitary kill vehicle led to a miss.

The July 30 demonstration using a U.S. ship "restored confidence" for the Japanese that the miss last fall was an isolated incident, he says. ⁶⁶

October 27, 2009, Test. This was the third Japanese flight test, and it involved a single ballistic missile target. MDA states that

The Japan Maritime Self-Defense Force (JMSDF) and the United States Missile Defense Agency (MDA) announced the successful completion of an Aegis Ballistic Missile Defense (BMD) intercept flight test, in cooperation with the U.S. Navy, off the coast of Kauai in Hawaii. The event, designated Japan Flight Test Mission 3 (JFTM-3), marked the third time that a JMSDF ship has successfully engaged a ballistic missile target, including two successful intercepts, with the sea-based midcourse engagement capability provided by Aegis BMD.

The JFTM-3 test event verified the newest engagement capability of the Japan Aegis BMD configuration of the recently upgraded Japanese destroyer, JS MYOKO (DDG-175). At approximately 6:00pm (HST), 1:00 pm Tokyo time on Oct 28, a separating, medium-range ballistic missile target was launched from the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii. JS MYOKO crew members detected and tracked the target. The Aegis Weapon System then developed a fire control solution and, at approximately 6:04pm (HST), 1:04 pm Tokyo time a Standard Missile-3 (SM-3) Block IA interceptor missile was launched. Approximately 3 minutes later, the SM-3 successfully intercepted the target approximately 100 miles above the Pacific Ocean. JFTM-3 is a significant milestone in the growing cooperation between Japan and the U.S. in the area of missile defense.

Also participating in the test, were the Pearl Harbor-based USS Lake Erie (CG 70) and USS Paul Hamilton (DDG 60) which detected and tracked the target and conducted a simulated engagement.⁶⁷

October 28, 2010, Test. This was the fourth Japanese flight test, and it involved a single ballistic missile target. MDA states that

The Japan Maritime Self-Defense Force (JMSDF) and the United States Missile Defense Agency (MDA) announced the successful completion of an Aegis Ballistic Missile Defense (BMD) intercept flight test, in cooperation with the U.S. Navy, off the coast of Kauai in Hawaii.

The event marked the fourth time that a JMSDF ship has engaged a ballistic missile target, including three successful intercepts, with the sea-based midcourse engagement capability provided by Aegis BMD.

The JFTM-4 test event verified the newest engagement capability of the Japan Aegis BMD configuration of the recently upgraded Japanese destroyer, JS KIRISHIMA. At approximately 5:06 p.m. (HST), 12:06 p.m. Tokyo time on Oct. 29, 2010, a separating

⁶⁶ Amy Butler, "SM-3 Upgrade Program Cost Increases," *Aerospace Daily & Defense Report*, August 4, 2009: 1-2. See also Dan Taylor, "Navy Conducts Aegis BMD Test, New Baseline System Participates," *Inside the Navy*, August 3, 2009; Daniel Wasserbly, "US Aegis BMD System Achieves Trial Success," *Jane's Defence Weekly*, August 5, 2009: 8.

⁶⁷ Missile Defense Agency, "Japan/U.S. Missile Defense Flight Test Successful," October 28, 2009 (09-News-0021). See also Christopher P. Cavas, "Japanese Destroyer Conducts Successful BMD Test," *NavyTimes.com*, October 28, 2009; and Amy Butler and Michael Bruno, "SM-3 Scores Hit In Japanese Test," *Aerospace Daily & Defense Report*," October 29, 2009: 3.

1,000 km class ballistic missile target was launched from the Pacific Missile Range Facility at Barking Sands, Kauai, Hawaii.

JS KIRISHIMA crew members detected and tracked the target. The Aegis Weapon System then developed a fire control solution and launched a Standard Missile -3 (SM-3) Block IA missile. Approximately three minutes later, the SM-3 successfully intercepted the target approximately 100 miles above the Pacific Ocean. JFTM-4 is a significant milestone in the growing cooperation between Japan and the U.S. in the area of missile defense.

Also participating in the test was USS LAKE ERIE and USS RUSSELL, Aegis ships which cooperated to detect, track and conduct a simulated intercept engagement against the same target. ⁶⁸

April 15, 2011, Test. MDA states that this flight test "was the most challenging test to date, as it was the first Aegis BMD version 3.6.1 intercept against an intermediate-range target (range 1,864 to 3,418 [statute] miles) and the first Aegis BMD 3.6.1 engagement relying on remote tracking data." MDA states that

The Missile Defense Agency (MDA), U.S. Navy sailors aboard the Aegis destroyer USS O'KANE (DDG 77), and Soldiers from the 94th Army Air and Missile Defense Command operating from the 613th Air and Space Operations Center at Hickam Air Force Base, Hawaii, successfully conducted a flight test of the Aegis Ballistic Missile Defense (BMD) element of the nation's Ballistic Missile Defense System, resulting in the intercept of a separating ballistic missile target over the Pacific Ocean. This successful test demonstrated the capability of the first phase of the European Phased Adaptive Approach (EPAA) announced by the President in September, 2009.

At 2:52 a.m. EDT (6:52 p.m. April 15 Marshall Island Time), an intermediate-range ballistic missile target was launched from the Reagan Test Site, located on Kwajalein Atoll in the Republic of the Marshall Islands, approximately 2,300 miles southwest of Hawaii. The target flew in a northeasterly direction towards a broad ocean area in the Pacific Ocean. Following target launch, a forward-based AN/TPY-2 X-band transportable radar, located on Wake Island, detected and tracked the threat missile. The radar sent trajectory information to the Command, Control, Battle Management, and Communications (C2BMC) system, which processed and transmitted remote target data to the USS O'KANE. The destroyer, located to the west of Hawaii, used the data to develop a fire control solution and launch the SM-3 Block IA missile approximately 11 minutes after the target was launched.

As the IRBM target continued along its trajectory, the firing ship's AN/SPY-1 radar detected and acquired the ballistic missile target. The firing ship's Aegis BMD weapon system uplinked target track information to the SM-3 Block IA missile. The SM-3 maneuvered to a point in space as designated by the fire control solution and released its kinetic warhead. The kinetic warhead acquired the target, diverted into its path, and, using only force of a direct impact, destroyed the threat in a "hit-to-kill" intercept.

During the test the C2BMC system, operated by Soldiers from the 94th Army Air and Missile Defense Command, received data from all assets and provided situational awareness of the engagement to U.S. Pacific Command, U.S. Northern Command and U.S. Strategic Command.

⁶⁸ Missile Defense Agency, "Joint Japan-U.S. Missile Defense Flight Test Successful," October 29, 2010 (10-News-0016). See also Marina Malenic, "Japanese Aegis Destroyer Successfully Completes Missile-Intercept Test," *Defense Daily*, November 1, 2010: 6.

The two demonstration Space Tracking and Surveillance Satellites (STSS), launched by MDA in 2009, successfully acquired the target missile, providing stereo "birth to death" tracking of the target.

Today's event, designated Flight Test Standard Missile-15 (FTM-15), was the most challenging test to date, as it was the first Aegis BMD version 3.6.1 intercept against an intermediate-range target (range 1,864 to 3,418 [statute] miles) and the first Aegis BMD 3.6.1 engagement relying on remote tracking data. The ability to use remote radar data to engage a threat ballistic missile greatly increases the battle space and defended area of the SM-3 missile.

Initial indications are that all components performed as designed. Program officials will spend the next several months conducting an extensive assessment and evaluation of system performance based upon telemetry and other data obtained during the test.⁶⁹

September 1, 2011, Test. This flight test, which did not result in an intercept, was the first flight test of the SM-3 Block IB interceptor. MDA states that it

was unable to achieve the planned intercept of a ballistic missile target during a test over the Pacific Ocean exercising the sea-based element of the Ballistic Missile Defense System (BMDS).

At approximately 3:53 a.m. Hawaii Standard Time (9:53 a.m. EDT) a short-range ballistic missile target was launched from the U.S. Navy's Pacific Missile Range Facility on Kauai, Hawaii. Approximately 90 seconds later, a Standard Missile 3 (SM-3) Block 1B interceptor missile was launched from the cruiser USS LAKE ERIE (CG-70) but an intercept of the target was not achieved.

This was the first flight test of the advanced SM-3 Block 1B interceptor missile. Program officials will conduct an extensive investigation to determine the cause of the failure to intercept. ⁷⁰

May 9, 2012, Test. MDA states that this flight test "was the first successful live fire intercept test of the SM-3 Block IB interceptor and the second-generation Aegis BMD 4.0.1 weapon system." MDA states that

The Missile Defense Agency (MDA) and U.S. Navy sailors aboard the USS LAKE ERIE (CG 70) successfully conducted a flight test of the Aegis Ballistic Missile Defense (BMD) system, resulting in the first intercept of a short-range ballistic missile target over the Pacific Ocean by the Navy's newest Missile Defense interceptor, the Standard Missile -3 (SM-3) Block IB.

At 8:18 p.m. Hawaiian Standard Time (2:18 a.m. EDT May 10) the target missile was launched from the Pacific Missile Range Facility, located on Kauai, Hawaii. The target flew on a northwesterly trajectory towards a broad ocean area of the Pacific Ocean. Following target launch, the USS LAKE ERIE detected and tracked the missile with its onboard AN/SPY-1 radar. The ship, equipped with the second-generation Aegis BMD 4.0.1 weapon system, developed a fire control solution and launched the Standard Missile-3 (SM-3) Block IB interceptor.

⁶⁹ Missile Defense Agency, "Sea-based Missile Defense Flight Test Results in Successful Intercept," April 15, 2011 (11-News-0007).

⁷⁰ Missile Defense Agency, "Sea-Based Missile Defense Test Conducted," September 1, 2011 (11-News-0016). See also Amy Butler, "Upgraded Ballistic Missile Killer Fizzles In First Flight Test," *Aerospace Daily & Defense Report*, September 2, 2011: 3; and Mike McCarthy, "Sea-Based Missile Defense Test Fails," *Defense Daily*, September 2, 2011: 2-3.

The USS LAKE ERIE continued to track the target and sent trajectory information to the SM-3 Block IB interceptor in-flight. The SM-3 maneuvered to a point in space, as designated by the fire control solution, and released its kinetic warhead. The kinetic warhead acquired the target, diverted into its path, and, using only the force of a direct impact, engaged and destroyed the threat in a hit-to-kill intercept.

Today's event, designated Flight Test Standard Missile-16 (FTM-16) Event 2a, was the first successful live fire intercept test of the SM-3 Block IB interceptor and the second-generation Aegis BMD 4.0.1 weapon system. Previous successful intercepts were conducted with the Aegis BMD 3.6.1 weapon system and the SM-3 Block IA interceptor, which are currently operational on U.S. Navy ships deployed across the globe....

Initial indications are that all components performed as designed. Program officials will conduct an extensive assessment and evaluation of system performance based upon telemetry and other data obtained during the test. 71

June 26, 2012, Test. MDA states that this flight test "was the second consecutive successful intercept test of the SM-3 Block IB missile and the second-generation Aegis BMD 4.0.1 weapon system." MDA states that

The Missile Defense Agency (MDA) and U.S. Navy sailors in the USS LAKE ERIE (CG 70) successfully conducted a flight test of the Aegis Ballistic Missile Defense (BMD) system, resulting in the intercept of a separating ballistic missile target over the Pacific Ocean by the Navy's newest missile defense interceptor missile, the Standard Missile-3 (SM-3) Block IB.

At 11:15 pm Hawaii Standard Time, June 26 (5:15 am EDT June 27), the target missile was launched from the Pacific Missile Range Facility, located on Kauai, Hawaii. The target flew on a northwesterly trajectory towards a broad ocean area of the Pacific Ocean. Following target launch, the USS LAKE ERIE detected and tracked the missile with its onboard AN/SPY-1 radar. The ship, equipped with the second-generation Aegis BMD 4.0.1 weapon system, developed a fire control solution and launched the SM-3 Block IB missile.

The USS LAKE ERIE continued to track the target and sent trajectory information to the SM-3 Block IB missile in-flight. The SM-3 maneuvered to a point in space, as designated by the fire control solution, and released its kinetic warhead. The kinetic warhead acquired the target, diverted into its path, and, using only the force of a direct impact, engaged and destroyed the threat in a hit-to-kill intercept.

Today's test event was the second consecutive successful intercept test of the SM-3 Block IB missile and the second-generation Aegis BMD 4.0.1 weapon system. The first successful SM-3 Block IB intercept occurred on May 9, 2012. Today's intercept is a critical accomplishment for the second phase of the President's European Phased Adaptive Approach consisting of the SM-3 Block IB interceptor employed in an Aegis Ashore system in Romania in 2015.

Initial indications are that all components performed as designed resulting in a very accurate intercept.⁷²

October 25, 2012, Test. MDA states that in this flight test,

⁷¹ Missile Defense Agency, "Second-Generation Aegis Ballistic Missile Defense System Completes Successful Intercept Flight Test," May 9, 2012 (12-News-0007).

⁷² Missile Defense Agency, "Second-Generation Aegis Ballistic Missile Defense System Completes Second Successful Intercept Flight Test," June 27, 2012 (12-News-0008).

The Missile Defense Agency (MDA), U.S. Army soldiers from the 94th and 32nd Army Air and Missile Defense Command (AAMDC); U.S. Navy sailors aboard the USS FITZGERALD (DDG 62); and airmen from the 613th Air and Space Operations Center successfully conducted the largest, most complex missile defense flight test ever attempted resulting in the simultaneous engagement of five ballistic missile and cruise missile targets. An integrated air and ballistic missile defense architecture used multiple sensors and missile defense systems to engage multiple targets at the same time....

The USS FITZGERALD successfully engaged a low flying cruise missile over water. The Aegis system also tracked and launched an SM-3 Block 1A interceptor against a Short-Range Ballistic Missile. However, despite indication of a nominal flight of the SM-3 Block 1A interceptor, there was no indication of an intercept of the SRBM.⁷³

February 12, 2013, Test. MDA states that in this flight test,

The Missile Defense Agency (MDA) and U.S. Navy sailors aboard the USS LAKE ERIE (CG 70) successfully conducted a flight test of the Aegis Ballistic Missile Defense (BMD) system, resulting in the intercept of a medium-range ballistic missile target over the Pacific Ocean by a Standard Missile-3 (SM-3) Block IA guided missile.

At 11:10 p.m. HST (4:10 a.m. EST) a unitary medium-range ballistic missile target was launched from the Pacific Missile Range Facility, on Kauai, Hawaii. The target flew northwest towards a broad ocean area of the Pacific Ocean.

The in-orbit Space Tracking and Surveillance System-Demonstrators (STSS-D) detected and tracked the target, and forwarded track data to the USS LAKE ERIE. The ship, equipped with the second-generation Aegis BMD weapon system, used Launch on Remote doctrine to engage the target.

The ship developed a fire control solution from the STSS-D track and launched the SM-3 Block IA guided missile approximately five minutes after target launch. The SM-3 maneuvered to a point in space and released its kinetic warhead. The kinetic warhead acquired the target reentry vehicle, diverted into its path, and, using only the force of a direct impact, engaged and destroyed the target.

Initial indications are that all components performed as designed. Program officials will assess and evaluate system performance based upon telemetry and other data obtained during the test.

Today's event, designated Flight Test Standard Missile-20 (FTM-20), was a demonstration of the ability of space-based assets to provide mid-course fire control quality data to an Aegis BMD ship, extending the battlespace, providing the ability for longer range intercepts and defense of larger areas.⁷⁴

May 16, 2013, Test. MDA states that in this flight test,

The Missile Defense Agency (MDA) and U.S. Navy sailors aboard the USS LAKE ERIE (CG-70) successfully conducted a flight test today of the Aegis Ballistic Missile Defense (BMD) system, resulting in the intercept of a separating ballistic missile target over the Pacific Ocean by the Aegis BMD 4.0 Weapon System and a Standard Missile-3 (SM-3) Block IB missile.

⁷³ Missile Defense Agency, "Ballistic Missile Defense System Engages Five Targets Simultaneously During Largest Missile Defense Flight Test in History," October 25, 2012 (12-News-0011).

⁷⁴ Missile Defense Agency, "Aegis Ballistic Missile Defense Intercepts Target Using Space Tracking and Surveillance System-Demonstrators (STSS-D) Data," February 13, 2013 (13-News-0002). See also Troy Clarke, "Space-Based Sensors Star in "Stellar Eyes" Missile Defense Test," *Navy News Service*, February 13, 2013.

At 5:25 p.m. (Hawaii Time, 11:25 p.m. EDT), May 15, a separating short-range ballistic missile target was launched from the Pacific Missile Range Facility, on Kauai, Hawaii. The target flew northwest towards a broad ocean area of the Pacific Ocean. Following target launch, the USS LAKE ERIE (CG-70) detected and tracked the missile with its onboard AN/SPY-1 radar. The ship, equipped with the second-generation Aegis BMD weapon system, developed a fire control solution and launched the SM-3 Block IB missile. The SM-3 maneuvered to a point in space based on guidance from Aegis BMD Weapons Systems and released its kinetic warhead. The kinetic warhead acquired the target reentry vehicle, diverted into its path, and, using only the force of a direct impact, engaged and destroyed the target.

Initial indications are that all components performed as designed. Program officials will assess and evaluate system performance based upon telemetry and other data obtained during the test.

This test exercised the latest version of the second-generation Aegis BMD Weapon System and Standard Missile, providing capability for engagement of longer-range and more sophisticated ballistic missiles.

Last night's event, designated Flight Test Standard Missile-19 (FTM-19), was the third consecutive successful intercept test of the Aegis BMD 4.0 Weapon System and the SM-3 Block IB guided missile. Previous successful ABMD 4.0 SM-3 Block IB intercepts occurred on May 9, 2012 and June 26, 2012. Other Aegis BMD intercepts have employed the ABMD 3.6 and 4.0 with the SM-3 Block IA missile, which is currently operational on U.S. Navy ships deployed across the globe. ⁷⁵

September 10, 2013, Test. MDA states that in this flight test,

The Missile Defense Agency (MDA), Ballistic Missile Defense System (BMDS) Operational Test Agency, Joint Functional Component Command for Integrated Missile Defense, and U.S. Pacific Command, in conjunction with U.S. Army soldiers from the Alpha Battery, 2nd Air Defense Artillery Regiment, U.S. Navy sailors aboard the guided missile destroyer USS Decatur (DDG-73), and U.S. Air Force airmen from the 613th Air and Operations Center successfully conducted a complex missile defense flight test, resulting in the intercept of two medium-range ballistic missile targets. The flight test was planned more than a year ago, and is not in any way connected to events in the Middle Fast

The test was conducted in the vicinity of the U.S. Army Kwajalein Atoll/Reagan Test Site and surrounding areas in the western Pacific. The test stressed the ability of the Aegis Ballistic Missile Defense (BMD) and Terminal High Altitude Area Defense (THAAD) weapon systems to function in a layered defense architecture and defeat a raid of two near-simultaneous ballistic missile targets.

The two medium-range ballistic missile targets were launched on operationally realistic trajectories towards a defended area near Kwajalein. Along with overhead space assets providing launch alerts, an Army-Navy/Transportable Radar Surveillance and Control (AN/TPY-2) radar in Forward Based Mode detected the targets and relayed track information to the Command, Control, Battle Management, and Communications (C2BMC) system for further transmission to defending BMDS assets.

The USS Decatur with its Aegis Weapon System detected and tracked the first target with its onboard AN/SPY-1 radar. The Aegis BMD weapon system developed a fire control

⁷⁵ Missile Defense Agency, "Aegis Ballistic Missile Defense System Completes Successful Intercept Flight Test," May 16, 2013 (13-News-0005). See also Mike McCarthy, "Aegis Missile Intercept Successful," *Defense Daily*, May 17, 2013: 7-8; and Amy Butler, "MDA Conducts Two Successful Flight Tests," *Aerospace Daily & Defense Report*, May 17, 2013: 3.

solution, launched a Standard Missile-3 (SM-3) Block IA missile, and successfully intercepted the target.

In a demonstration of BMDS layered defense capabilities, a second AN/TPY-2 radar in Terminal Mode, located with the THAAD weapon system, acquired and tracked the target missiles. THAAD developed a fire control solution, launched a THAAD interceptor missile, and successfully intercepted the second medium-range ballistic missile target. THAAD was operated by soldiers from the Alpha Battery, 2nd Air Defense Artillery Regiment. As a planned demonstration of THAAD's layered defense capabilities, a second THAAD interceptor was launched at the target destroyed by Aegis as a contingency in the event the SM-3 did not achieve an intercept.

Initial indications are that all components performed as designed. MDA officials will extensively assess and evaluate system performance based upon telemetry and other data obtained during the test.

The event, a designated Flight Test Operational-01 (FTO-01), demonstrated integrated, layered, regional missile defense capabilities to defeat a raid of two threat-representative medium-range ballistic missiles in a combined live-fire operational test. Soldiers, sailors, and airmen from multiple combatant commands operated the systems, and were provided a unique opportunity to refine operational doctrine and tactics while increasing confidence in the execution of integrated air and missile defense plans. ⁷⁶

September 18, 2013, Test. MDA states that in this flight test,

The Missile Defense Agency (MDA), U.S. Pacific Command, and U.S. Navy sailors aboard the USS Lake Erie (CG 70) successfully conducted a flight test today of the Aegis Ballistic Missile Defense (BMD) system, resulting in the intercept of a complex separating short-range ballistic missile target over the Pacific Ocean by the Aegis BMD 4.0 Weapon System and a Standard Missile-3 (SM-3) Block IB guided missile.

At approximately 2:30 p.m. Hawaii Standard Time (8:30 p.m. EDT), a complex separating short-range ballistic missile target was launched from the Pacific Missile Range Facility on Kauai, Hawaii. The target flew northwest towards a broad ocean area of the Pacific Ocean. Following target launch, the USS Lake Erie detected and tracked the missile with its onboard AN/SPY-1 radar. The ship, equipped with the secondgeneration Aegis BMD weapon system, developed a fire control solution and launched two SM-3 Block IB guided missiles to engage the target. The first SM-3 that was launched successfully intercepted the target warhead. This was the first salvo mission of two SM-3 Block IB guided missiles launched against a single separating target.

Program officials will assess and evaluate system performance based upon telemetry and other data obtained during the test.

This test exercised the latest version of the second-generation Aegis BMD Weapon System, capable of engaging longer range and more sophisticated ballistic missiles. This was an operationally realistic test, in which the target's launch time and bearing are not known in advance, and the target complex was the most difficult target engaged to date.⁷⁷

Block IB Intercepts Target In Salvo Fire," Inside the Navy, September 23, 2013.

⁷⁶ Missile Defense Agency, "Successful Missile Defense Test Against Multiple Targets," September 10, 2013 (13-News-0007). See also Megan Eckstein, "Aegis BMDS, THAAD Successful In Complex MDA Flight Test," Defense Daily, September 11, 2013: 1; and Amy Butler, "MDA Goes Two For Two In Operational Test," Aerospace Daily & Defense Report, September 11, 2013: 4.

⁷⁷ Missile Defense Agency, "Aegis Ballistic Missile Defense System Completes Successful Intercept Flight Test," September 18, 2013 (13-News-0008). See also Mike McCarthy, "Pentagon Succeeds At Sea-Based Missile Defense Test," Defense Daily, September 20, 2013: 1; Amy Butler, "Aegis Intercepts In First-Ever Salvo Test," Aerospace Daily & Defense Report, September 20, 2013: 3; and Jason Sherman and John Liang, "Missile Defense Agency's SM-3

October 3, 2013, Test. MDA states that in this flight test,

The Missile Defense Agency (MDA), U.S. Pacific Command, and U.S. Navy sailors aboard the USS Lake Erie (CG 70) successfully conducted an operational flight test of the Aegis Ballistic Missile Defense (BMD) system, resulting in the intercept of a medium-range ballistic missile target over the Pacific Ocean by the Aegis BMD 4.0 Weapon System and a Standard Missile-3 (SM-3) Block IB guided missile.

At approximately 7:33 p.m. Hawaii Standard Time, Oct. 3 (1:33 a.m. EDT, Oct.4), a medium-range ballistic missile target was launched from the Pacific Missile Range Facility on Kauai, Hawaii. The target flew northwest towards a broad ocean area of the Pacific Ocean. Following target launch, the USS Lake Erie detected and tracked the missile with its onboard AN/SPY-1 radar. The ship, equipped with the second-generation Aegis BMD weapon system, developed a fire control solution and launched the SM-3 Block IB guided missile to engage the target. The SM-3 maneuvered to a point in space and released its kinetic warhead. The kinetic warhead acquired the target reentry vehicle, diverted into its path, and, using only the force of a direct impact, engaged and destroyed the target.

Program officials will assess and evaluate system performance based upon telemetry and other data obtained during the test.

This test exercised the latest version of the second-generation Aegis BMD Weapon System, capable of engaging longer range and more sophisticated ballistic missiles. ⁷⁸

November 6, 2014, Test. MDA states that in this flight test,

The Missile Defense Agency, U.S. Pacific Command, and U.S. Navy Sailors aboard the USS John Paul Jones (DDG 53) successfully conducted a flight test today of the Aegis Ballistic Missile Defense (BMD) system, resulting in three successful near-simultaneous target engagements over the Pacific Ocean by the Aegis Baseline (BL) 9.C1 (BMD 5.0 Capability Upgrade) Weapon System configured ship. One short-range ballistic missile target was intercepted by a Standard Missile-3 (SM-3) Block IB guided missile, while two low-flying cruise missile targets were engaged by Standard Missile-2 (SM-2) Block IIIA guided missiles near-simultaneously.

At approximately 12:03 p.m. (Hawaii Standard Time, 5:03 p.m. Eastern Standard Time) one short-range ballistic missile target and two cruise missile targets were launched from the Pacific Missile Range Facility (PMRF) on Kauai, Hawaii. Following the target launches, the USS John Paul Jones, in Integrated Air and Missile Defense (IAMD) Radar Priority Mode, detected and tracked the missiles with its onboard AN/SPY-1 radar.

The ship, equipped with the Aegis BMD weapon system, developed a fire control solution and launched one SM-3 Block IB guided missile to engage the ballistic missile target. The SM-3 missile maneuvered to a point in space and released its kinetic warhead. The kinetic warhead acquired the target's reentry vehicle, diverted into its path, and destroyed the target with the sheer energy and force of direct impact. The ship also launched two SM-2 Block IIIA guided missiles to successfully engage the cruise missile targets.

Program officials will evaluate system performance based upon telemetry and other data obtained during the test.

⁷⁸ Missile Defense Agency, "Aegis Ballistic Missile Defense System Completes Successful Intercept Flight Test," October 4, 2013 (13-News-0009). See also Michael Fabey, "Aegis Completes Another Intercept Test," *Aerospace Daily & Defense Report*, October 7, 2013: 2; Jason Sherman, "SM-3 Block IB Completes IOT&E With A Bang, Full-Rate Production Review," *Inside the Navy*, October 7, 2013; Mike McCarthy, "Aegis Missile Defense Test Scores Hit," *Defense Daily*, October 7, 2013: 4.

This test, designated Flight Test Standard Missile-25 (FTM-25), was the first live-fire event of the Aegis Weapon System in IAMD Radar Priority Mode, engaging a ballistic missile target and a raid of cruise missile targets.⁷⁹

June 25, 2015, Test. MDA's summary table of Aegis BMD flight tests⁸⁰ shows this as a test that did not result in the launch of an SM-3. MDA as of August 3, 2015, had not issued a news release discussing this event. MDA's count of 31 successful intercepts in 37 launches through July 29, 2015, does not appear to include this test, suggesting that this was considered a "no test" event—a test in which there was a failure that was not related to the Aegis BMD system or the SM-3 interceptor. A June 26, 2015, news report states the following:

The U.S. Missile Defense Agency on Friday said a target malfunction caused it to abort a key intercept test of the Aegis Ashore missile defense system, built by Lockheed Martin Corp, that is due to be installed in Romania this year.

"Due to a target malfunction, the test wasn't conducted and an interceptor wasn't launched," said Rick Lehner, a spokesman for the U.S. Defense Department agency....

It was not immediately clear what caused the target to malfunction, or when the test would be rescheduled. 81

October 4, 2015, Test. MDA as of November 10, 2015, had not issued a news release discussing this event. MDA's count of 32 successful intercepts in 39 launches through November 1, 2015, does not appear to include this test, suggesting that this was considered a "no test" event—a test in which there was a failure that was not related to the Aegis BMD system or the SM-3 interceptor.

October 20, 2015, Test. Regarding this test, the Navy states the following:

USS Ross (DDG 71) successfully intercepted a ballistic missile in the North Atlantic Ocean during the Maritime Theater Missile Defense (MTMD) Forum's At Sea Demonstration (ASD) Oct. 20, 2015.

This is first time a Standard Missile-3 (SM-3) Block IA guided interceptor was fired on a non-U.S. range and the first intercept of a ballistic missile threat in the European theater.

For the scenario, a short-range Terrier Orion ballistic missile target was launched from Hebrides Range and was inflight simultaneously with two anti-ship cruise missiles fired at the coalition task group. Ross fired a SM-3 and successfully engaged the ballistic missile target in space. In its air defense role, USS The Sullivans (DDG 68) fired a SM-2, which is the first time a SM-2 was fired on the Hebrides Range....

"ASD-15 shows that with communication, collaboration and commitment nations can come together and flawlessly defend against a complex threat scenario." [said] Vice Adm. James Foggo, Commander, U.S. 6^{th} Fleet....

ASD-15 is a U.K.-hosted, U.S.-facilitated, multi-national demonstration of coalition Integrated Air and Missile Defense capability....

-

⁷⁹ Missile Defense Agency, "Aegis Ballistic Missile Defense System Completes Successful Intercept Flight Test," November 6, 2014 (14-News-0012). See also Andrea Shalal, "U.S. Aegis System Zaps Cruise, Ballistic Missile Targets in Test," *Reuters (www.reuters.com)*, November 6, 2014; Mike McCarthy, "Aegis BMD Hits Three Targets In Simultaneous Test," *Defense Daily*, November 10, 2014.

⁸⁰ "Aegis Ballistic Missile Defense Test Firing Record," accessed August 3, 2015, at http://www.mda.mil/global/documents/pdf/aegis_tests.pdf. [The URL now begins with https://.]

⁸¹ Andrea Shalal, "U.S. Skips Aegis Ashore Missile Test After Target Malfunction," *Reuters*, June 26, 2015. See also "First Aegis Ashore Intercept Test Aborted. Does this Raise Issues for Planned 2015 Deployment Date for the Romanian Aegis Ashore Site?" *Mostly Missile Defense*, June 27, 2015.

There are a number of firsts associated with this event including:

- First intercept of a ballistic missile target in the European theater
- First SM-3 fired on a non-U.S. range
- The first firing of an SM-2 and SM-3 on the Hebrides Range, United Kingdom
- First use of multi-national beyond line of sight link architecture for IAMD purposes in the European theater
- First international ship (Netherlands and Spain) transmissions of BMD cues to a U.S.
 BMD guided missile destroyer
- First time coalition IAMD used in a scenario with simultaneous attack from anti-ship cruise and ballistic missiles.

This test demonstrates the commitment of the United States to the defense of Europe through our four Aegis ships forward deployed to Rota, Spain, and shore station in Romania.

The 10 MTMD Forum member nations are: Australia, Canada, France, Germany, Italy, The Netherlands, Norway, Spain, United Kingdom, and the United States.

Eight nations provided ships and aircraft for ASD-15 including Canada, France, Italy, The Netherlands, Norway, Spain, United Kingdom, and the United States with Germany providing personnel to augment the Forum's multi-national Combined Task Group staff.

The tactical data link used in ASD-15 covers over 5.7 million square miles.

USS Mount Whitney (LCC-20), flag ship for U.S. 6th Fleet, served as the viewing platform for officials representing participating coalition nations during ASD-15; delegates from seven MTMD Forum nations, Denmark, and Japan watched the missile intercept on a live video feed aboard the ship.

The Maritime Theater Missile Defense forum was established in 1999 as a co-operative body for participating navies to develop improved cooperation and promote interoperability in sea-based missile defense.⁸²

November 1, 2015, Test. Regarding this test, MDA states the following:

The U.S. Missile Defense Agency (MDA), Ballistic Missile Defense System (BMDS) Operational Test Agency, Joint Functional Component Command for Integrated Missile Defense, U.S. European Command, and U.S. Pacific Command conducted a complex operational flight test of the BMDS demonstrating a layered defense architecture.

The test, designated Flight Test Operational-02 Event 2a, was conducted in the vicinity of Wake Island and surrounding areas of the western Pacific Ocean. The test stressed the ability of Aegis Ballistic Missile Defense (BMD) and Terminal High Altitude Area Defense (THAAD) weapon systems to negate two ballistic missile threats while Aegis BMD simultaneously conducted an anti-air warfare operation.

This was a highly complex operational test of the BMDS which required all elements to work together in an integrated layered defense design to detect, track, discriminate, engage, and negate the ballistic missile threats.

BMDS assets included: a THAAD battery consisting of a THAAD Fire Control and Communications (TFCC) unit, THAAD launcher, and an Army Navy/Transportable Radar Surveillance and Control Model 2 (AN/TPY-2) radar in terminal mode; a second

⁸² U.S. Naval Forces Europe-Africa/U.S. 6th Fleet Public Affairs, "USS Ross Successfully Intercepts Ballistic Missile Target During Coalition Test," *Navy News*, October 20, 2015.

AN/TPY-2 radar in forward-based mode; Command, Control, Battle Management and Communications (C2BMC); and the USS JOHN PAUL JONES (DDG-53) Aegis BMD-configured ship with its onboard AN/SPY-1 radar.

At approximately 11:05 pm EDT (October 31), a Short Range Air Launch Target (SRALT) was launched by a U.S. Air Force C-17 aircraft southeast of Wake Island. The THAAD AN/TPY-2 radar in terminal mode detected the target and relayed track information to the TFCC to develop a fire control solution and provide track information for use by other defending BMDS assets. The THAAD weapon system developed a fire control solution, launched a THAAD interceptor missile, and successfully intercepted the SRALT target.

While THAAD was engaging the SRALT, an extended Medium Range Ballistic Missile (eMRBM) was air-launched by another Air Force C-17. The eMRBM target was detected and tracked by multiple BMDS assets including the AN/TPY-2 in forward-based mode, and the USS JOHN PAUL JONES with its AN/SPY-1 radar. Shortly after eMRBM launch, a BQM-74E air-breathing target was also launched and tracked by the USS JOHN PAUL JONES.

As a demonstration of layered defense capabilities, both Aegis BMD and THAAD launched interceptors to engage the eMRBM. The USS JOHN PAUL JONES successfully launched a Standard Missile-3 (SM-3) Block IB Threat Upgrade guided missile, but an anomaly early in its flight prevented a midcourse intercept. However, the THAAD interceptor, in its terminal defense role, acquired and successfully intercepted the target. Concurrently, Aegis BMD successfully engaged the BQM-74E air-breathing target with a Standard Missile-2 Block IIIA guided missile. A failure review is currently underway to investigate the SM-3 anomaly.

Several other missile defense assets observed the launches and gathered data for future analysis. Participants included the Command, Control, Battle Management, and Communications (C2BMC) Experimental Lab (X-Lab), C2BMC Enterprise Sensors Laboratory (ESL), and the Space Tracking and Surveillance System-Demonstrators (STSS-D).

The MDA will use test results to improve and enhance the BMDS.⁸³

December 10, 2015, Test. Regarding this test, MDA states the following:

The Missile Defense Agency (MDA) and the Ballistic Missile Defense System (BMDS) Operational Test Agency, in conjunction with U.S. Pacific Command, U.S. European Command, and Joint Functional Component Command for Integrated Missile Defense, successfully conducted the first intercept flight test today (December 9, Hawaii Standard Time) of a land-based Aegis Ballistic Missile Defense (BMD) weapon system and Standard Missile (SM)-3 Block IB Threat Upgrade guided missile, launched from the Aegis Ashore Missile Defense Test Complex at the Pacific Missile Range Facility (PMRF), Kauai, Hawaii.

During the test, a target representing a medium-range ballistic missile was air-launched from a U.S. Air Force C-17 aircraft over the broad ocean area southwest of Hawaii. An AN/TPY-2 radar in Forward Based Mode, located at PMRF, detected the target and relayed target track information to the Command, Control, Battle Management, and Communication (C2BMC) system. The Aegis Weapon System at the Aegis Ashore site received track data from C2BMC and used its component AN/SPY-1 radar to acquire, track, and develop a fire control solution to engage the target. The Aegis Weapon System

⁸³ Missile Defense Agency, "Ballistic Missile Defense System Demonstrates Layered Defense While Conducting Multiple Engagements in Operational Test," November 1, 2015 (15-NEWS-0008).

then launched the SM-3 Block IB Threat Upgrade guided missile from its Vertical Launch System. The SM-3's kinetic warhead acquired the target reentry vehicle, diverted into its path, and destroyed the target using the kinetic force of a direct impact.

The primary purpose of the test, designated Flight Test Operational-02 Event 1a, was to assess the operational effectiveness of the Aegis Ashore capability as part of a larger BMDS architecture. Aegis Ashore uses a nearly identical configuration of the Vertical Launch System, fire control system, and SPY-1 radar currently in use aboard Aegis BMD cruisers and destroyers deployed at sea around the world.

Vice Admiral James D. Syring, MDA Director, said, "Today's test demonstrated that the same Aegis Ballistic Missile Defense capability that has been fielded at sea and operational for years, will soon be operational ashore as part of the European Phased Adaptive Approach (EPAA) Phase 2 capability in Romania. I am very proud of the tremendous effort by the entire government/industry team in executing this vitally important mission for our Nation and our allies." 84

February 3, 2017, Test. Regarding the intercept of February 3, 2017, MDA states the following:

The U.S. Missile Defense Agency (MDA), the Japan Ministry of Defense (MoD), and U.S. Navy sailors aboard USS John Paul Jones (DDG 53) successfully conducted a flight test Feb. 3 (Hawaii Standard Time), resulting in the first intercept of a ballistic missile target using the Standard Missile-3 (SM-3) Block IIA off the west coast of Hawaii....

At approximately 10:30 p.m., Hawaii Standard Time, Feb. 3 (3:30 a.m. Eastern Daylight Time, Feb. 4) a medium-range ballistic missile target was launched from the Pacific Missile Range Facility at Kauai, Hawaii. John Paul Jones detected and tracked the target missile with its onboard AN/SPY-1D(V) radar using the Aegis Baseline 9.C2 weapon system. Upon acquiring and tracking the target, the ship launched an SM-3 Block IIA guided missile which intercepted the target.

"Today's test demonstrates a critical milestone in the cooperative development of the SM-3 Block IIA missile," said MDA Director Vice Adm. Jim Syring. "The missile, developed jointly by a Japanese and U.S. government and industry team, is vitally important to both our nations and will ultimately improve our ability to defend against increasing ballistic missile threats around the world."

Based on preliminary data the test met its primary objective. Program officials will continue to evaluate system performance based upon telemetry and other data obtained during the test.

The flight test, designated SM-3 Block IIA Cooperative Development (SCD) Project Flight Test, Standard Missile (SFTM)-01, was the third flight test of the SM-3 Block IIA guided missile, and the first intercept test. This test also marks the first time an SM-3IIA was launched from an Aegis ship and the first intercept engagement using the Aegis Baseline 9.C2 (BMD 5.1) weapon system.⁸⁵

June 21, 2017, Test. Regarding the intercept test of June 21, 2017, MDA states the following:

The U.S. Missile Defense Agency and the Japan Ministry of Defense conducted a development flight test today of a new Standard Missile-3 (SM-3) BLock IIA missile off the coast of Hawaii.

A planned intercept was not achieved....

⁸⁴ Missile Defense Agency, "Standard Missile Completes First Intercept Test from Aegis Ashore Test Site," December 10, 2015 (15-NEWS-0011).

⁸⁵ Missile Defense Agency, "U.S., Japan Successfully Conduct First SM-3 Block IIA Intercept Test," February 3, 2017 (17-NEWS-0002).

At approximately 7:20 p.m., Hawaii Standard Time, June 21 (1:20 am Eastern Daylight Time, June 22), a medium-range ballistic target missile was launched from the Pacific Missile Range Facility at Kauai, Hawaii. The USS John Paul Jones (DDG 53) detected and tracked the target missile with its onboard AN/SPY-1 radar using the Aegis Baseline 9.C2 weapon system. Upon acquiring and tracking the target, the ship launched an SM-3 Block IIA guided missile, but the missile did not intercept the target.

Program officials will conduct an extensive analysis of the test data. Until that review is complete, no additional details will be available. ⁸⁶

A July 24, 2017, press report stated the following:

A U.S. Missile Defense Agency review of a failed ballistic missile intercept test showed that a mistaken input into the combat system by a sailor on the destroyer John Paul Jones caused the missile to self-destruct before reaching the target.

A tactical datalink controller, in charge of maintaining encrypted data exchanges between ships and aircraft, accidentally identified the incoming ballistic missile target as a friendly in the system, causing the SM-3 missile to self-destruct in flight, according to a source familiar with the test.

The head of MDA did not comment on the sailor error, but said in a statement that the ongoing review confirmed it wasn't an issue with the SM-3 Block IIA missile or the Navy's Aegis combat system.

"Though the review is still in process, the SM-3 IIA interceptor and Aegis Combat System have been eliminated as the potential root cause," of the failure, said Air Force Lt. Gen. Sam Greaves, the director of MDA.

"We are conducting an extensive review as part of our standard engineering and test processes, and it would be inappropriate to comment further until we complete the investigation."87

October 15, 2017, Test. Regarding the intercept test of October 15, 2017, MDA states the following:

Ships from Canada, France, Germany, Italy, the Netherlands, Spain, the United Kingdom, and the United States participated in a live-fire integrated air and missile defense (IAMD) scenario, defending against a ballistic missile target as well as three anti-ship cruise missiles Oct. 15 as part of exercise Formidable Shield 2017 (FS17). Naval Striking and Support Forces NATO (STRIKFORNATO) is conducting Formidable Shield on behalf of the U.S. 6th Fleet. The U.S. Missile Defense Agency is also a major participant in this exercise.

During the collective self-defense scenario, the Arleigh Burke-class guided-missile destroyer USS Donald Cook (DDG 75) successfully detected, tracked and intercepted a medium-range ballistic missile target with a Standard Missile-3 Block IB guided missile. Simultaneously, the Spanish frigate SPS Alvaro de Bazan (F101) fired an Evolved SeaSparrow Missile (ESSM) against an incoming anti-ship cruise missile while the Netherlands frigate HNLMS Tromp (F803) fired ESSMs against a pair of incoming anti-ship cruise missiles. This was the first time NATO's smart defense concept was demonstrated with ships serving as air defense units protecting naval ballistic missile defense units.

⁸⁶ Missile Defense Agency, "Aegis Missile Defense Test Conducted," June 21, 2017 (17-NEWS-0006).

⁸⁷ David B. Larter, "Sailor Error Led to Failed US Navy Ballistic Missile Intercept Test," *Defense News*, July 24, 2017.

Following that event, the U.S. Missile Defense Agency and U.S. Navy sailors aboard USS McFaul (DDG 74) successfully test fired a Standard Missile-6 (SM-6). That flight test, designated Standard Missile Controlled Test Vehicle (SM CTV)-03, demonstrated the successful performance of an SM-6 launched from an Aegis Ballistic Missile Defense capable DDG and was conducted as part of the system's flight certification process. The SM-6 test was not part of the Formidable Shield exercise, but was conducted in coordination with that event to leverage the available range assets....

Formidable Shield is designed to improve allied interoperability in an IAMD environment, using NATO command-and-control reporting structures and datalink architecture. FS17 is the inaugural iteration of this exercise....

More than 14 ships, 10 aircraft, and approximately 3,300 personnel from Belgium, Canada, Denmark, France, Germany, Italy, the Netherlands, Spain, the U.K., and the U.S., are participating in FS17 on the U.K. Ministry of Defense's Hebrides Range located on the Western Isles of Scotland....

U.S. ships participating in Formidable Shield include the Arleigh Burke-class guided-missile destroyers Donald Cook, USS Mitscher (DDG 57), USS Winston S. Churchill (DDG 81), and the Louis and Clark-class dry cargo ship USNS Medger Evers (T-AKE 13).

Formidable Shield 2017 began Sept. 24, and is scheduled to conclude Oct. 18, 2017. This exercise is planned to be a recurring, biennial event, and is designed to assure allies, deter adversaries, and demonstrate our commitment to collective defense of the NATO alliance. Formidable Shield and exercise Joint Warrior 17-2, a U.K.-led, multinational exercise in a maritime training environment for allies to improve interoperability and prepare forces for combined operations, are occurring concurrently.⁸⁸

January 31, 2018, Test. Regarding the intercept test of January 31, 2018, MDA states the following:

The Missile Defense Agency and U.S. Navy sailors manning the Aegis Ashore Missile Defense Test Complex (AAMDTC) conducted a live-fire missile flight test Jan. 31 using a Standard-Missile (SM)-3 Block IIA missile launched from the Pacific Missile Range Facility, Kauai, Hawaii. This was a developmental and operational test of a new capability and utilized a missile variant not yet in production. The primary objective of the test, to intercept an air-launched intermediate-range ballistic missile target with an SM-3 Block IIA missile, was not achieved. However, much was still learned that demonstrated an increase in the effective range of the overall ballistic missile defense system.

Several firsts were accomplished as a result of this mission, which included using both ground and space-based sensors to remotely cue the launch of the interceptor by the Aegis weapon system. This was also the first time an SM-3 Block IIA missile was launched from land using the Aegis Ashore test complex. The test also demonstrated a highly complex multi-domain command, control, battle management and communications system, which was used by operational crews to execute the mission.

"We always make progress every time we conduct a test," said MDA Director Lt. Gen. Sam Greaves. "While we are disappointed that we did not demonstrate a successful intercept, we did demonstrate significant advances in capability and collected valuable test data that will allow us to further improve our capability and capacity of the ballistic missile defense system. We are committed to protecting and defending our nation, its

⁸⁸ Missile Defense Agency, "Formidable Shield 2017: Ship Engages BMD Target During NATO Exercise, MDA and Navy Conduct SM-6 Test Launch," October 15, 2017 (17-NEWS-0010).

warfighters, friends and allies against all ranges of ballistic missiles in all phases of flight."

MDA will conduct an extensive investigation to determine the cause or causes of any anomalies that may have prevented a successful intercept.⁸⁹

Details on Selected Endo-Atmospheric (SM-2 Block IV and SM-6) Flight Tests Since July 2015

May 24, 2006, Test. Regarding the intercept of May 24, 2006, MDA states the following:

The U.S. Navy, in cooperation with the Missile Defense Agency, today successfully conducted a ballistic missile defense demonstration involving the intercept of a target missile in the terminal phase (the last few seconds) of flight. The test involved an Aegis cruiser modified to detect, control and engage a ballistic missile target with a modified Standard Missile - 2 (SM-2) Block IV. The Pearl Harbor-based Aegis cruiser USS Lake Erie (CG 70) conducted the mission against a short-range target missile launched from the Pacific Missile Range Facility, Barking Sands, Kauai, Hawaii. It was the first seabased intercept of a ballistic missile in its terminal phase.

The modified Aegis Weapon System and the modified SM-2 Block IV provided the firing ship the capability to guide the missile to achieve either; 1) a direct body to body hit between the interceptor and the threat or, 2) a near-direct hit where the high pressure, heat and fragments are placed on the threat by a blast fragmentation warhead. This warhead is similar in concept to that used in the deployed Israeli Arrow system. In today's test, the threat missile was completely destroyed by the combined effects of these two mechanisms.

"This is another example of the ongoing cooperative spirit between the Navy and the Missile Defense Agency," said Rear Admiral Barry McCullough, Director, Surface Warfare, on the staff of the Chief of Naval Operations.

"We believe it is an important step towards the desired end-state of a robust sea-based terminal ballistic missile defense capability," McCullough added, "and it begins to meet an immediate near-term concern of our Combatant Commanders." "The only terminal phase program we currently have that is operational is the Patriot Advanced Capability 3 (PAC-3)," he added, "and considerations to put those aboard ships are still under review."

There is currently no sea-based terminal ballistic missile defense capability. The Navy Area Theater Ballistic Missile Defense (TBMD) Program, had been under development, but was terminated in December 2001. In ballistic missile defense, the modified Aegis Weapon System, with a modified SM-2 Block IV missile provides a near term, limited emergency capability against a very specific segment of the ballistic missile threat. The Navy and MDA consider it vital to develop a more robust capability for terminal ballistic missile defense of the joint sea base and friendly force embarkation points ashore.

⁸⁹ Missile Defense Agency, "Test Conducted From Aegis Ashore Missile Defense Test Complex," January 31, 2018

the target as an "air-launched intermediate-range ballistic missile target"); "Failed Missile Test Off of Kauai Costs the US \$130 Million," Associated Press, February 20, 2018; Daniel Cebul, "Missile Defense Failure Might Prove a Good

Thing for SM-3 IIA in the Long Run, Says MDA Head," Defense News, March 6, 2018.

⁽¹⁸⁻NEWS-0001). See also David B. Larter, "Another US Navy Ballistic Missile Intercept Reportedly Fails in hawaii," Defense News, January 31, 2018; Richard Abott, "SM-3 IIA Missile Defense Test In Hawaii Reportedly Fails, Defense Tester Report Finds Lower Confidence," Defense Daily, February 1, 2018: 4-6; David B. Larter, "Reality Check: Failures Happen, Even in Missile Defense Testing," Defense News, February 1, 2018; Ben Werner, "Pentagon Confirms SM-3 Block IIA Missile Missed its Target in Test This Week," USNI News, February 1, 2018; Jason Sherman, "MDA Acknowledges Aegis BMD Flight Test Failure," Inside the Navy, February 5, 2018 (which identifies

"There is a significant number of SM-2 Block IV missiles available, which may be modified and deployed on Navy ships modified to perform a BMD mission," said Air Force Lieutenant General Henry "Trey" Obering, Missile Defense Agency director. "While talking with the Navy and the Combatant Commanders, on how and when, we might be able to make that happen," Lieutenant General Obering added, "MDA will continue to improve its development of the midcourse Aegis sea-based ballistic missile defense capability, which utilizes the Standard Missile – 3 (SM-3), and has successfully achieved 6 intercepts in 7 flight tests."

June 5, 2008, Test. Regarding the intercept of June 5, 2008, MDA states the following:

Air Force Lieutenant General Henry "Trey" Obering III, Missile Defense Agency (MDA) director, announced the successful completion of the latest flight test of the sea-based Aegis Ballistic Missile Defense (BMD) element, conducted jointly with the U.S. Navy off the coast of Kauai, Hawaii. The event, designated as Flight Test Maritime-14 (FTM-14), marked the fourteenth overall successful intercept, in sixteen attempts, for the Aegis BMD program and the second successful intercept of a terminal phase (last few seconds of flight) target by a modified Standard Missile - 2 Block IV (SM-2 Blk IV) interceptor. The mission was completed by the cruiser USS Lake Erie (CG 70), using the tactically certified Aegis BMD shipboard weapon system, modified for a terminal capability, and the modified SM-2 Blk IV. This is the 35th successful terminal and midcourse defense intercept in 43 tests since 2001.

Aegis BMD is the sea-based mid-course component of the MDA's Ballistic Missile Defense System (BMDS) and is designed to intercept and destroy short to intermediate-range ballistic missile threats. In 2006, the program's role was expanded to include a sea-based terminal defense effort, using a modified version of the SM-2 Blk IV. Unlike other missile defense technologies now deployed or in development, the SM-2 Blk IV does not use "hit to kill" technology (directly colliding with the target) to destroy the target missile. Rather, it uses a blast fragmentation device that explodes in direct proximity to the target to complete the intercept and destroy the target.

At 8:13 a.m. Hawaii Standard Time (2:13 p.m. Eastern Daylight Time) a short range target was launched from a mobile launch platform 300 miles west of the Pacific Missile Range Facility (PMRF), Barking Sands, Kauai, Hawaii. Moments later, the USS Lake Erie's Aegis BMD Weapon System detected and tracked the target and developed fire control solutions.

Approximately four minutes later, the USS Lake Erie's crew fired two SM-2 Blk IV missiles, and two minutes later they successfully intercepted the target inside the earth's atmosphere, about 12 miles above the Pacific Ocean and about 100 miles west-northwest of Kauai.

FTM-14 test objectives included evaluation of: the BMDS ability to intercept and kill a short range ballistic missile target with the Aegis BMD, modified with the terminal mission capability; the modified SM-2 Blk IV missile using SPY-1 cue; and system-level integration of the BMDS. ⁹¹

⁹⁰ Missile Defense Agency, "First at-Sea Demonstration of Sea-Based Terminal Capability Successfully Completed," May 24, 2006 (06-FYI-0079). See also Gregg K. Kakesako, "Missile Defense System Makes History," *Honolulu Star-Bulletin*, May 25, 2006; Audrey McAvoy, "Ship Shoots Down Test Missile For The First Time," *NavyTimes.com*, May 25, 2006; "Navy, MDA Announce First Terminal Sea-Based Intercept," *Aerospace Daily & Defense Report*, May 26, 2006; Zachary M. Peterson, "Navy Conducts First Sea-Based Terminal Phase Missile Defense Test," *Inside the Navy*, May 29, 2006; and Jeremy Singer, "Sea-Based Terminal May Boost U.S. Missile Defense Capability," *Space News*, June 12, 2006.

⁹¹ Missile Defense Agency, "Successful Sea-Based Missile Defense Intercept," June 5, 2008 (08-NEWS-0068). See also Dave Ahearn, "Aegis, SM-2 Interceptors Kill Target Missile In Terminal-Phase Success," *Defense Daily*, June 6, (continued...)

March 26, 2009, Test. Regarding the intercept of March 26, 2009, the Navy states the following:

Commander, U.S. 3rd Fleet, Vice Adm. Samuel J. Locklear announced the completion of the fleet operational exercise, Stellar Daggers, March 26.

The scheduled event took place March 24 and 26. Command and control of the participants in Stellar Daggers resided with U.S. 3rd Fleet based in San Diego.

San Diego-based Aegis destroyer, USS Benfold (DDG 65) engaged multiple targets during this multi-event exercise with Standard Missile-2 (SM-2) Block IIIA and modified SM-2 BLK IV missiles. The overall objective of

Stellar Daggers was to test the Aegis system's sea-based ability to simultaneously detect, track, engage and destroy multiple incoming air and ballistic missile threats during terminal or final phase of flight.

During the event, Benfold's Aegis Weapons System successfully detected and intercepted a cruise missile target with a SM-2 BLK IIIA, while simultaneously detecting and intercepting an incoming short range ballistic missile (SRBM) target with a modified SM-2 BLK IV. This is the first time the fleet has successfully tested the Aegis system's ability to intercept both an SRBM in terminal phase and a low-altitude cruise missile target at the same time. 92

July 28-29, 2015, Test. Regarding the intercepts of July 28 and 29, 2015, MDA states the following:

The Missile Defense Agency (MDA), U.S. Pacific Command, and U.S. Navy Sailors aboard the USS John Paul Jones (DDG 53) successfully conducted a series of four flight test events exercising the Aegis Ballistic Missile Defense (BMD) element of the nation's Ballistic Missile Defense System (BMDS). The flight test, designated Multi-Mission Warfare (MMW) Events 1 through 4, demonstrated successful intercepts of short-range ballistic missile and cruise missile targets by the USS John Paul Jones, configured with Aegis Baseline 9.C1 (BMD 5.0 Capability Upgrade) and using Standard Missile (SM)-6 Dual I and SM-2 Block IV missiles. All flight test events were conducted at the Pacific Missile Range Facility (PMRF), Kauai, Hawaii.

MDA Director Vice Adm. James D. Syring said, "This important test campaign not only demonstrated an additional terminal defense layer of the BMDS, it also proved the robustness of the multi-use SM-6 missile on-board a Navy destroyer, further reinforcing the dynamic capability of the Aegis Baseline 9 weapon system."

Event 1

On July 28, at approximately 10:30 p.m. Hawaii Standard Time (July 29, 4:30 a.m. Eastern Daylight Time), a short-range ballistic missile (SRBM) target was launched from PMRF in a northwesterly trajectory. The USS John Paul Jones, positioned west of Hawaii, detected, tracked, and launched a SM-6 Dual I missile, resulting in a successful target intercept.

Event 2

On July 29, at approximately 8:15 p.m. Hawaii Standard Time (July 30, 2:15 a.m. Eastern Daylight Time), a short-range ballistic missile (SRBM) target was launched from PMRF in a northwesterly trajectory. The USS John Paul Jones detected, tracked, and launched a SM-2 Block IV missile, resulting in a successful target intercept.

2008.

^{(...}continued)

^{92 &}quot;Navy Completes Air and Ballistic Missile Exercise," Navy News Service, March 26, 2009.

Event 3

On July 31, at approximately 2:30 p.m. Hawaii Standard Time, (8:30 p.m. Eastern Daylight Time) an AQM-37C cruise missile target was air-launched to replicate an airwarfare threat. The USS John Paul Jones detected, tracked, and successfully engaged the target using an SM-6 Dual I missile.

Event 4

On August 1, at approximately 3:45 p.m. Hawaii Standard Time, (9:45 p.m. Eastern Standard Time), a BQM-74E cruise missile target was launched from PMRF. The USS John Paul Jones detected, tracked, and successfully engaged the target using an SM-6 Dual I missile. The SM-6's proximity-fuze warhead was programmed not to detonate after reaching the lethal distance from the target, thus providing the ability to recover and reuse the BQM-74E target....

MMW Event 1 was the first live fire event of the SM-6 Dual I missile.

MMW Events 1 and 2 were the 30th and 31st successful ballistic missile defense intercepts in 37 flight test attempts for the Aegis BMD program since flight testing began in 2002.⁹³

December 14, 2016, Test. Regarding the intercept of December 14, 2016, MDA states the following:

The Missile Defense Agency and sailors aboard USS John Paul Jones (DDG 53), an Aegis baseline 9.C1 equipped destroyer, today successfully fired a salvo of two SM-6 Dual I missiles against a complex medium-range ballistic missile target, demonstrating the Sea Based Terminal endo-atmospheric defensive capability and meeting the test's primary objective.

The test was conducted off the coast of Hawaii just after midnight on Dec. 14.

"This test demonstrated the capabilities MDA and the Navy are delivering to our fleet commanders," said MDA Director Vice Adm. Jim Syring. "The SM-6 missile and the Aegis Weapon System continue to prove that they are critical components of our nation's multilayered, robust ballistic missile defense system."...

Program officials will continue evaluating system performance based upon telemetry and other data obtained during the test. 94

A December 16, 2016, press report states the following:

The Missile Defense Agency (MDA) said its new Sea Based Terminal (SBT) system achieved its second ballistic missile intercept during a Dec. 14 test over the Pacific Ocean.

During the test, the USS John Paul Jones (DDG-53)... fired a salvo of two Raytheon [RTN] Standard Misisle-6 (SM-6) interceptors in immediate succession against a medium-range ballistic missile target launched from the Pacific Missile Range Facility on Kauai, Hawaii. The first interceptor was not armed and was designed to collect test data, MDA said. The second interceptor, which carried an explosive warhead, intercepted the Lockheed Martin-built target....

MDA called the target "complex" but declined to elaborate. However, according to the Missile Defense Advocacy Alliance, the target emulated China's Dong-Feng 21 (DF-21),

⁹³ Missile Defense Agency, "Aegis Ballistic Missile Defense System Completes Successful Series of Intercept Flight Test Events," August 3, 2015 (15-NEWS-0007).

⁹⁴ Missile Defense Agency, "MDA Conducts SM-6 MRBM Intercept Test," December 14, 2016 (16-NEWS-0012).

a ballistic missile equipped with a maneuverable re-entry vehicle and designed to destroy U.S., aircraft carriers.

The event, designated Flight Test Standard Missile-27 (FTM-27), was SBT's first salvo test and its second intercept in as many tries. 95

A March 15, 2017, press report quoted Mike Campisi, Raytheon's SM-6 senior director, as stating the following: "We had two missiles in the air and we wanted to make sure that we were in fact pulling in on the target and looking at target versus looking at the other missile that's in the air. Simulations all said the missile would never look at the other missile in the air however, but it's nice to prove that." ⁹⁶

August 29, 2017, Test. Regarding the intercept of August 29, 2017, MDA states the following:

The Missile Defense Agency and U.S. Navy sailors aboard the USS John Paul Jones (DDG 53) successfully conducted a complex missile defense flight test, resulting in the intercept of a medium-range ballistic missile (MRBM) target using Standard Missile-6 (SM-6) guided missiles during a test off the coast of Hawaii today [August 29].

John Paul Jones detected and tracked a target missile launched from the Pacific Missile Range Facility on Kauai, Hawaii with its onboard AN/SPY-1 radar, and onboard SM-6 missiles executed the intercept.

"We are working closely with the fleet to develop this important new capability, and this was a key milestone in giving our Aegis BMD ships an enhanced capability to defeat ballistic missiles in their terminal phase," said MDA Director Lt. Gen. Sam Greaves. "We will continue developing ballistic missile defense technologies to stay ahead of the threat as it evolves."

This test, designated Flight Test Standard Missile-27 Event 2 (FTM-27 E2), marks the second time that an SM-6 missile has successfully intercepted a medium-range ballistic missile target. 97

⁹⁵ Marc Selinger, "Missile Defense Agency Scores Second Intercept With Sea Based Terminal System," *Defense Daily*, December 16, 2016: 3-4.

⁹⁶ Kris Osborn, "Breakthrough - Missile Defense Agency Fires 2 SM-6 Interceptors at Once - Testing New Seeker Technology," *Scout Military*, March 15, 2017.

⁹⁷ Missile Defense Agency, "Aegis BMD System Intercepts Target Missile," August 29, 2017 (17-NEWS-0009).

Appendix B. Homeporting of U.S. Navy Aegis BMD Ships at Rota, Spain

This appendix presents additional background information on the homeporting of four BMD-capable Aegis destroyers at Rota, Spain.

As part of the October 5, 2011, U.S.-Spain joint announcement of the plan, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero, stated in part:

This meeting marks a step forward on the path that we set for ourselves less than a year ago at the Lisbon Summit, aiming to make NATO an Alliance that is "more effective, engaged and efficient than ever before", in the words of [NATO] Secretary-General Rasmussen.

At that historic Summit, decisions of enormous importance for the future of the Alliance were taken, such as the New Strategic Concept to face the new challenges of the 21st century, and the establishment of a new command structure that is leaner and more flexible, and improved.

Besides these two important innovations, and as a consequence of them, the allies decided to develop an Anti-Missile Defence System....

As you will recall, as a consequence of this new structure launched in Lisbon, Spain obtained an installation of great importance within NATO's Command and Control Structure: the Combined Air Operations Centre (CAOC) in Torrejón de Ardoz, Spain.

This Centre, together with the Centre in Uedem, Germany, will form part of the air command and control system which is to include the anti-missile defence that the Alliance is going to implement.

Together with this land-based component of the new air defence system, I can inform you that Spain is also going to support, starting in 2013, an important part of the system's naval element.

In recent months, the different options have been studied, and finally, it was decided that Spain should be the site for this component of the system, due to its geostrategic location and its position as gateway to the Mediterranean.

Specifically, the United States is going to deploy, as its contribution to NATO's Anti-Missile Defence System, a total of four vessels equipped with the AEGIS system, to be based in Rota.

This means that Rota is going to become a support centre for vessel deployment, enabling them to join multinational forces or carry out NATO missions in international waters, particularly in the Mediterranean....

Moreover, this initiative will have a positive impact, in socio-economic terms, on our country, and most especially on the Bay of Cadiz.

Permanently basing four vessels in Rota will require investing in the Base's infrastructure, and contracts with service providers, thus generating approximately a thousand new jobs, both directly and indirectly.

For the shipyards, and for Spain's defence industry, the foreseeable impact will also be highly positive, as the USA is considering conducting the vessels' maintenance and upkeep at the nearby San Fernando shipyards, in the province of Cadiz. In addition, there will be significant transfer of state-of-the-art technology, from which Spain can benefit. ⁹⁸

As part of the same joint announcement, Secretary of Defense Leon Panetta stated in part:

With four Aegis ships at Rota, the alliance is significantly boosting combined naval capabilities in the Mediterranean, and enhancing our ability to ensure the security of this vital region. This relocation of assets takes place as part of the United States' ongoing effort to better position forces and defensive capabilities in coordination with our European allies and partners.

This announcement should send a very strong signal that the United States is continuing to invest in this alliance, and that we are committed to our defense relationship with Europe even as we face growing budget constraints at home....

Alongside important agreements that were recently concluded with Romania, Poland, and Turkey, Spain's decision represents a critical step in implementing the European Phased Adaptive Approach, as our leaders agreed to in Lisbon....

Beyond missile defense, the Aegis destroyers will perform a variety of other important missions, including participating in the Standing NATO Maritime Groups, as well as joining in naval exercises, port visits, and maritime security cooperation activities....

The agreement also enables the United States to provide rapid and responsive support to the U.S. Africa and U.S. Central Commands, as needed.⁹⁹

An October 5, 2011, press report stated the following:

A senior U.S. defense official said making the [ships'] base at Rota, on Spain's southwestern Atlantic coast near Cadiz, would reduce the numbers of [BMD-capable Aegis] ships needed for the [EPAA] system.

"You [would] probably need 10 of these ships if they were based in the eastern U.S. to be able to ... transit across the ocean back and forth to [keep the same number on] patrol in the Med," he said.

The U.S. official said the United States was committed to having at least one ship on station at all times in the eastern Mediterranean, where their anti-missile missiles would be most effective. Having them based in Rota would enable more than one to be in the eastern Mediterranean as needed.

The ships also would be part of the pool of vessels available to participate in standing NATO maritime groups, which are used to counter piracy and for other missions, he said. 100

An October 10, 2011, press report stated the following:

"Our plan is to have the first couple [of ships] there in 2014 and the next two in about 2015," said Cmdr. Marc Boyd, spokesman for [U.S. Navy] 6th Fleet. Boyd added: "It's

⁹⁸ "Announcement on missile defence cooperation by NATO Secretary General Anders Fogh Rasmussen, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero and US Defense Secretary Leon Panetta," October 5, 2011, accessed October 6, 2011, at http://www.nato.int/cps/en/SID-107ADE55-FF83A6B8/natolive/opinions_78838.htm.

⁹⁹ "Announcement on missile defence cooperation by NATO Secretary General Anders Fogh Rasmussen, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero and US Defense Secretary Leon Panetta," October 5, 2011, accessed October 6, 2011, at http://www.nato.int/cps/en/SID-107ADE55-FF83A6B8/natolive/opinions_78838.htm. See also "SECDEF Announces Stationing of Aegis Ships at Rota, Spain," accessed October 6, 2011, at http://www.navy.mil/search/display.asp?story_id=63109.

¹⁰⁰ David Brunnstrom and David Alexander, "Spain To Host U.S. Missile Defense Ships," *Reuters*, October 5, 2011. Ellipsis as in original.

really early in the process and we haven't selected any of the ships yet." Boyd said the shift will bring an estimated 1,300 sailors and Navy civilians and 2,100 dependents to Naval Station Rota, which would double the base's ranks. Naval Station Rota spokesman Lt. j.g. Jason Fischer said the base now has 1,067 sailors....

The three piers at the base primarily support Navy ships passing through on port calls.

Boyd said 6th Fleet is considering plans to add base infrastructure and maintenance facilities to support the ships, as well as additional housing for crews, "but the base is pretty suited as it is now."¹⁰¹

¹⁰¹ Sam Fellman, "U.S. To Base Anti-Missile Ships in Spain," *Defense News*, October 10, 2011: 76.

Appendix C. Allied Participation and Interest in Aegis BMD Program

This appendix presents additional background information on the homeporting of four BMD-capable Aegis destroyers at Rota, Spain.

As part of the October 5, 2011, U.S.-Spain joint announcement of the plan, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero, stated in part:

This meeting marks a step forward on the path that we set for ourselves less than a year ago at the Lisbon Summit, aiming to make NATO an Alliance that is "more effective, engaged and efficient than ever before", in the words of [NATO] Secretary-General Rasmussen.

At that historic Summit, decisions of enormous importance for the future of the Alliance were taken, such as the New Strategic Concept to face the new challenges of the 21st century, and the establishment of a new command structure that is leaner and more flexible, and improved.

Besides these two important innovations, and as a consequence of them, the allies decided to develop an Anti-Missile Defence System....

As you will recall, as a consequence of this new structure launched in Lisbon, Spain obtained an installation of great importance within NATO's Command and Control Structure: the Combined Air Operations Centre (CAOC) in Torrejón de Ardoz, Spain.

This Centre, together with the Centre in Uedem, Germany, will form part of the air command and control system which is to include the anti-missile defence that the Alliance is going to implement.

Together with this land-based component of the new air defence system, I can inform you that Spain is also going to support, starting in 2013, an important part of the system's naval element.

In recent months, the different options have been studied, and finally, it was decided that Spain should be the site for this component of the system, due to its geostrategic location and its position as gateway to the Mediterranean.

Specifically, the United States is going to deploy, as its contribution to NATO's Anti-Missile Defence System, a total of four vessels equipped with the AEGIS system, to be based in Rota.

This means that Rota is going to become a support centre for vessel deployment, enabling them to join multinational forces or carry out NATO missions in international waters, particularly in the Mediterranean....

Moreover, this initiative will have a positive impact, in socio-economic terms, on our country, and most especially on the Bay of Cadiz.

Permanently basing four vessels in Rota will require investing in the Base's infrastructure, and contracts with service providers, thus generating approximately a thousand new jobs, both directly and indirectly.

For the shipyards, and for Spain's defence industry, the foreseeable impact will also be highly positive, as the USA is considering conducting the vessels' maintenance and upkeep at the nearby San Fernando shipyards, in the province of Cadiz. In addition, there

will be significant transfer of state-of-the-art technology, from which Spain can benefit. 102

As part of the same joint announcement, Secretary of Defense Leon Panetta stated in part:

With four Aegis ships at Rota, the alliance is significantly boosting combined naval capabilities in the Mediterranean, and enhancing our ability to ensure the security of this vital region. This relocation of assets takes place as part of the United States' ongoing effort to better position forces and defensive capabilities in coordination with our European allies and partners.

This announcement should send a very strong signal that the United States is continuing to invest in this alliance, and that we are committed to our defense relationship with Europe even as we face growing budget constraints at home....

Alongside important agreements that were recently concluded with Romania, Poland, and Turkey, Spain's decision represents a critical step in implementing the European Phased Adaptive Approach, as our leaders agreed to in Lisbon....

Beyond missile defense, the Aegis destroyers will perform a variety of other important missions, including participating in the Standing NATO Maritime Groups, as well as joining in naval exercises, port visits, and maritime security cooperation activities....

The agreement also enables the United States to provide rapid and responsive support to the U.S. Africa and U.S. Central Commands, as needed. 103

An October 5, 2011, press report stated the following:

A senior U.S. defense official said making the [ships'] base at Rota, on Spain's southwestern Atlantic coast near Cadiz, would reduce the numbers of [BMD-capable Aegis] ships needed for the [EPAA] system.

"You [would] probably need 10 of these ships if they were based in the eastern U.S. to be able to ... transit across the ocean back and forth to [keep the same number on] patrol in the Med," he said.

The U.S. official said the United States was committed to having at least one ship on station at all times in the eastern Mediterranean, where their anti-missile missiles would be most effective. Having them based in Rota would enable more than one to be in the eastern Mediterranean as needed.

The ships also would be part of the pool of vessels available to participate in standing NATO maritime groups, which are used to counter piracy and for other missions, he said. 104

An October 10, 2011, press report stated the following:

"Our plan is to have the first couple [of ships] there in 2014 and the next two in about 2015," said Cmdr. Marc Boyd, spokesman for [U.S. Navy] 6th Fleet. Boyd added: "It's

¹⁰² "Announcement on missile defence cooperation by NATO Secretary General Anders Fogh Rasmussen, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero and US Defense Secretary Leon Panetta," October 5, 2011, accessed October 6, 2011, at http://www.nato.int/cps/en/SID-107ADE55-FF83A6B8/natolive/opinions_78838.htm.

¹⁰³ "Announcement on missile defence cooperation by NATO Secretary General Anders Fogh Rasmussen, the Prime Minister of Spain, Jose Luis Rodriguez Zapatero and US Defense Secretary Leon Panetta," October 5, 2011, accessed October 6, 2011, at http://www.nato.int/cps/en/SID-107ADE55-FF83A6B8/natolive/opinions_78838.htm. See also "SECDEF Announces Stationing of Aegis Ships at Rota, Spain," accessed October 6, 2011, at http://www.navy.mil/search/display.asp?story_id=63109.

¹⁰⁴ David Brunnstrom and David Alexander, "Spain To Host U.S. Missile Defense Ships," *Reuters*, October 5, 2011. Ellipsis as in original.

really early in the process and we haven't selected any of the ships yet." Boyd said the shift will bring an estimated 1,300 sailors and Navy civilians and 2,100 dependents to Naval Station Rota, which would double the base's ranks. Naval Station Rota spokesman Lt. j.g. Jason Fischer said the base now has 1,067 sailors....

The three piers at the base primarily support Navy ships passing through on port calls.

Boyd said 6th Fleet is considering plans to add base infrastructure and maintenance facilities to support the ships, as well as additional housing for crews, "but the base is pretty suited as it is now." ¹⁰⁵

¹⁰⁵ Sam Fellman, "U.S. To Base Anti-Missile Ships in Spain," *Defense News*, October 10, 2011: 76.

Appendix D. Target for Simulating Endo-Atmospheric Flight of DF-21 ASBM

A past oversight issue for Congress concerns the lack of a target for simulating the endoatmospheric (i.e., final) phase of flight of China's DF-21 anti-ship ballistic missile. DOD's Director, Operational Test and Evaluation (DOT&E), in a December 2011 report (DOT&E's annual report for FY2011), stated the following:

Anti-Ship Ballistic Missile Target

A threat representative Anti-Ship Ballistic Missile (ASBM) target for operational openair testing has become an immediate test resource need. China is fielding the DF-21D ASBM, which threatens U.S. and allied surface warships in the Western Pacific. While the Missile Defense Agency has exo-atmospheric targets in development, no program currently exists for an endo-atmospheric target. The endo-atmospheric ASBM target is the Navy's responsibility, but it is not currently budgeted. The Missile Defense Agency estimates the non-recurring expense to develop the exo-atmospheric target was \$30 million with each target costing an additional \$30 million; the endo-atmospheric target will be more expensive to produce according to missile defense analysts. Numerous Navy acquisition programs will require an ASBM surrogate in the coming years, although a limited number of targets (3-5) may be sufficient to validate analytical models. ¹⁰⁶

A February 28, 2012, press report stated the following:

"Numerous programs will require" a test missile to stand in for the Chinese DF-21D, "including self-defense systems used on our carriers and larger amphibious ships to counter anti-ship ballistic missiles," [Michael Gilmore, the Pentagon's director of operational test and evaluation] said in an e-mailed statement....

"No Navy target program exists that adequately represents an anti-ship ballistic missile's trajectory," Gilmore said in the e-mail. The Navy "has not budgeted for any study, development, acquisition or production" of a DF-21D target, he said.

Lieutenant Alana Garas, a Navy spokeswoman, said in an e-mail that the service "acknowledges this is a valid concern and is assessing options to address it. We are unable to provide additional details."...

Gilmore, the testing chief, said his office first warned the Navy and Pentagon officials in 2008 about the lack of an adequate target. The warnings continued through this year, when the testing office for the first time singled out the DF-21D in its annual public report....

The Navy "can test some, but not necessarily all, potential means of negating anti-ship ballistic missiles," without a test target, Gilmore said. 107

The December 2012 report from DOT&E (i.e., DOT&E's annual report for FY2012) did not further discuss this issue; a January 21, 2013, press report stated that this is because the details of the issue are classified.¹⁰⁸

¹⁰⁶ Department of Defense, Director, Operational Test and Evaluation, *FY 2011 Annual Report*, December 2011, p. 294

 $^{^{107}}$ Tony Capaccio, "Navy Lacks Targets To Test U.S. Defenses Against China Missile," $Bloomberg\ Government\ (bgov.com),$ February 28, 2012.

¹⁰⁸ Christopher J. Castelli, "DOD Testing Chief Drops Public Discussion Of ASBM Target Shortfall," *Inside the Navy*, January 21, 2013.

A December 16, 2016, press report states (emphasis added):

The Missile Defense Agency (MDA) said its new Sea Based Terminal (SBT) system achieved its second ballistic missile intercept during a Dec. 14 test over the Pacific Ocean.

During the test, the USS John Paul Jones (DDG-53)... fired a salvo of two Raytheon [RTN] Standard Misisle-6 (SM-6) interceptors in immediate succession against a medium-range ballistic missile target launched from the Pacific Missile Range Facility on Kauai, Hawaii. The first interceptor was not armed and was designed to collect test data, MDA said. The second interceptor, which carried an explosive warhead, intercepted the Lockheed Martin-built target....

MDA called the target "complex" but declined to elaborate. However, according to the Missile Defense Advocacy Alliance, the target emulated China's Dong-Feng 21 (DF-21), a ballistic missile equipped with a maneuverable re-entry vehicle and designed to destroy U.S., aircraft carriers.

The event, designated Flight Test Standard Missile-27 (FTM-27), was SBT's first salvo test and its second intercept in as many tries. 109

Author Contact Information

(name redacted)
Specialist in Naval Affairs
[redacted]@crs.loc.gov7-....

¹⁰⁹ Marc Selinger, "Missile Defense Agency Scores Second Intercept With Sea Based Terminal System," *Defense Daily*, December 16, 2016: 3-4.

EveryCRSReport.com

The Congressional Research Service (CRS) is a federal legislative branch agency, housed inside the Library of Congress, charged with providing the United States Congress non-partisan advice on issues that may come before Congress.

EveryCRSReport.com republishes CRS reports that are available to all Congressional staff. The reports are not classified, and Members of Congress routinely make individual reports available to the public.

Prior to our republication, we redacted names, phone numbers and email addresses of analysts who produced the reports. We also added this page to the report. We have not intentionally made any other changes to any report published on EveryCRSReport.com.

CRS reports, as a work of the United States government, are not subject to copyright protection in the United States. Any CRS report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS report may include copyrighted images or material from a third party, you may need to obtain permission of the copyright holder if you wish to copy or otherwise use copyrighted material.

Information in a CRS report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to members of Congress in connection with CRS' institutional role.

EveryCRSReport.com is not a government website and is not affiliated with CRS. We do not claim copyright on any CRS report we have republished.