Navy Shipboard Lasers for Surface, Air, and
Missile Defense: Background and Issues for
Congress

Ronald O'Rourke
Specialist in Naval Affairs
June 25, 2014
Congressional Research Service
7-5700
www.crs.gov
R41526


Navy Shipboard Lasers for Surface, Air, and Missile Defense

Summary
Department of Defense (DOD) development work on high-energy military lasers, which has been
underway for decades, has reached the point where lasers capable of countering certain surface
and air targets at ranges of about a mile could be made ready for installation on Navy surface
ships over the next few years. More powerful shipboard lasers, which could become ready for
installation in subsequent years, could provide Navy surface ships with an ability to counter a
wider range of surface and air targets at ranges of up to about 10 miles.
The Navy and DOD have conducted development work on three principal types of lasers for
potential use on Navy surface ships—fiber solid state lasers (SSLs), slab SSLs, and free electron
lasers (FELs). One fiber SSL prototype demonstrator developed by the Navy is the Laser Weapon
System (LaWS). The Navy plans to install a LaWS system on the USS Ponce, a ship operating in
the Persian Gulf as an interim Afloat Forward Staging Base (AFSB[I]), in the summer of 2014 to
conduct continued evaluation of shipboard lasers in an operational setting. The Navy reportedly
anticipates moving to a shipboard laser program of record in “the FY2018 time frame” and
achieving an initial operational capability (IOC) with a shipboard laser in FY2020 or FY2021.
Although the Navy is developing laser technologies and prototypes of potential shipboard lasers,
and has a generalized vision for shipboard lasers, the Navy currently does not yet have a program
of record for procuring a production version of a shipboard laser. The possibility of equipping
Navy surface ships with lasers in coming years raises a number of potential issues for Congress,
including the following:
• how many types of lasers to continue developing, particularly given constraints
on Navy funding, and the relative merits of types currently being developed; and
• the potential implications of shipboard lasers for the design and acquisition of
Navy ships, including the Flight III DDG-51 destroyer that the Navy wants to
begin procuring in FY2016.

Congressional Research Service

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Contents
Introduction ...................................................................................................................................... 1
Issue for Congress ..................................................................................................................... 1
Scope, Sources, and Terminology ............................................................................................. 2
Background ...................................................................................................................................... 2
Shipboard Lasers in General...................................................................................................... 2
Potential Advantages and Limitations of Shipboard Lasers ................................................ 2
Potential Targets for Shipboard Lasers ................................................................................ 6
Required Laser Power Levels for Countering Targets ........................................................ 7
Types of Lasers Being Developed for Potential Shipboard Use ................................................ 8
Fiber Solid State Lasers (Fiber SSLs) ................................................................................. 8
Slab Solid State Lasers (Slab SSLs) .................................................................................. 11
Free Electron Lasers (FELs) ............................................................................................. 12
Navy Surface Fleet’s Generalized Vision for Shipboard Lasers .............................................. 12
Remaining Technical Challenges ............................................................................................ 13
Recent Developments .............................................................................................................. 14
Naval Directed Energy Steering Group ............................................................................. 14
Directed Energy Vision for U.S. Naval Forces ................................................................. 15
Directed Energy Roadmap and Possible Analysis of Alternatives (AOA) ........................ 16
Destroyers and LCSs Reportedly Leading Candidate Platforms ...................................... 17
LaWS to Be Installed on USS Ponce................................................................................. 17
Navy Anticipates Program of Record in FY2018 and IOC in FY2020-FY2021 .............. 17
March 2014 Navy Testimony ............................................................................................ 17
FY2015 Funding Request ........................................................................................................ 19
Issues for Congress ........................................................................................................................ 21
Number of Laser Types to Continue Developing .................................................................... 21
Potential Strategies ............................................................................................................ 21
Relative Merits of Laser Types.......................................................................................... 21
Implications for Ship Design and Acquisition ......................................................................... 23
Options for Congress ..................................................................................................................... 25
Legislative Activity for FY2015 .................................................................................................... 26
FY2015 Funding Request ........................................................................................................ 26
FY2015 National Defense Authorization Act (H.R. 4435/S. 2410) ........................................ 27
House ................................................................................................................................. 27
Senate ................................................................................................................................ 28
FY2015 DOD Appropriations Act (H.R. 4870) ....................................................................... 28
House ................................................................................................................................. 28

Figures
Figure C-1. Photograph of LaWS Prototype ................................................................................. 34
Figure C-2. Rendering of LaWS Integrated on CIWS Mount ....................................................... 35
Figure D-1. Rendering of TLS Integrated on Mk 38 Machine Gun Mount ................................... 37
Figure E-1. Photograph of MLD on Trailer ................................................................................... 41
Congressional Research Service

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Figure E-2. Schematic of MLD ..................................................................................................... 41
Figure E-3. Rendering of MLD in Notional Shipboard Installation .............................................. 42
Figure F-1. Photograph of an FEL Facility .................................................................................... 45
Figure F-2. Simplified Diagram of How an FEL Works ................................................................ 46
Figure F-3. Schematic of an FEL ................................................................................................... 46

Tables
Table 1. Surface Navy’s Generalized Vision for Shipboard High-Energy Lasers ......................... 13
Table A-1. Approximate Laser Power Levels Needed to Affect Certain Targets ........................... 29

Appendixes
Appendix A. Laser Power Levels Required to Counter Targets .................................................... 29
Appendix B. Navy Organizations Involved in Developing Lasers ................................................ 31
Appendix C. Additional Information on Laser Weapon System (LaWS) ...................................... 32
Appendix D. Additional Information on Tactical Laser System (TLS) ......................................... 36
Appendix E. Additional Information on Maritime Laser Demonstration (MLD) ......................... 38
Appendix F. Additional Information on Free Electron Laser (FEL) .............................................. 43
Appendix G. Innovative Naval Prototypes (INPs) ......................................................................... 47
Appendix H. DOD Technology Readiness Levels (TRLs) ............................................................ 48
Appendix I. Protocol on Blinding Lasers ...................................................................................... 49
Appendix J. Illumination of Objects in Space ............................................................................... 52
Appendix K. Section 220 of FY2000 Defense Authorization Act (P.L. 106-398) ......................... 53

Contacts
Author Contact Information........................................................................................................... 55

Congressional Research Service

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Introduction
Issue for Congress
Department of Defense (DOD) development work on high-energy military lasers, which has been
underway for decades, has reached the point where lasers capable of countering certain surface
and air targets at ranges of about a mile could be made ready for installation on Navy surface
ships over the next few years. More powerful shipboard lasers, which could become ready for
installation in subsequent years, could provide Navy surface ships with an ability to counter a
wider range of surface and air targets at ranges of up to about 10 miles.
The Navy plans to install a prototype solid state laser called the Laser Weapon System (LaWS) on
the USS Ponce, a ship operating in the Persian Gulf as an interim Afloat Forward Staging Base
(AFSB[I]), in the summer of 2014 to conduct continued evaluation of shipboard lasers in an
operational setting. The Navy reportedly anticipates moving to a shipboard laser program of
record in “the FY2018 time frame” and achieving an initial operational capability (IOC) with a
shipboard laser in FY2020 or FY2021.1
Compared to existing ship self-defense systems, such as missiles and guns, lasers could provide
Navy surface ships with a more cost effective means of countering certain surface, air, and
ballistic missile targets. Ships equipped with a combination of lasers and existing self-defense
systems might be able to defend themselves more effectively against a range of such targets.
Equipping Navy surface ships with lasers could lead to changes in naval tactics, ship design, and
procurement plans for ship-based weapons, bringing about a technological shift for the Navy—a
“game changer”—comparable to the advent of shipboard missiles in the 1950s.
The central issue for Congress is whether to approve or modify the Administration’s proposed
funding levels for development of potential shipboard lasers, and whether to provide the Navy or
DOD with direction concerning development and procurement programs for shipboard lasers.
Potential specific issues for Congress include the following:
• how many types of lasers to continue developing, particularly given constraints
on Navy funding, and the relative merits of types currently being developed; and
• the potential implications of shipboard lasers for the design and acquisition of
Navy ships, including the Flight III DDG-51 destroyer that the Navy wants to
begin procuring in FY2016.

1 Lara Seligman, “Navy-built LaWS To Begin Demo This Summer, IOC Slated For FY-20-21,” Inside the Navy, March
24, 2014. A program of record, or POR, is a term sometimes used by DOD officials that means, in general, a program
in the Future Years Defense Plan (FYDP) that is intended to provide a new, improved, or continuing materiel, weapon,
or information system or service capability in response to an approved need. The term is sometimes used to refer to a
program in a service’s budget for procuring and deploying an operational weapon system, as opposed to a research and
development effort that might or might not eventually lead to procurement and deployment of an operational weapon
system. If a research and development effort is converted into a program or record for procuring an operational weapon
system, the program might then be conducted under the DOD’s process for managing the acquisition of weapon
systems, which is discussed further in CRS Report RL34026, Defense Acquisitions: How DOD Acquires Weapon
Systems and Recent Efforts to Reform the Process
, by Moshe Schwartz.
Congressional Research Service
1

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Decisions that Congress makes regarding potential shipboard lasers could significantly affect
future Navy capabilities and funding requirements, the U.S. industrial base for military lasers, and
the industrial base for existing shipboard self-defense systems.
Scope, Sources, and Terminology
This report focuses on potential Navy shipboard lasers for countering surface, air, and ballistic
missile threats. It does not discuss the use of lasers on Navy aircraft or submarines, or the use of
lasers by other military services. This report is based on unclassified, open-domain information
from the Navy, industry, and research organizations such as RAND.
For purposes of this report, the term “short range” generally refers to ranges of one or two
nautical miles, while references to longer ranges or extended ranges refer to ranges of up to about
10 nautical miles.2 Lasers are one type of directed energy weapon (DEW); other DEWs include
microwave weapons and millimeter wave weapons. (Another new weapon being developed by
the Navy, the electromagnetic rail gun, is an electrically powered weapon, but strictly speaking is
not a directed energy weapon, since it fires a projectile.)
Background
Shipboard Lasers in General
Potential Advantages and Limitations of Shipboard Lasers
Lasers are of interest to the Navy and other observers as potential shipboard weapons because
they have certain potential advantages for countering some types of surface, air, and ballistic
missile targets. Shipboard lasers also have potential limitations for countering such targets.
Potential advantages and limitations are discussed below.
Advantages
Potential advantages of shipboard lasers for countering surface, air, and ballistic missile targets
include the following:
Low marginal cost per shot. Shipboard lasers could counter surface, air, and
ballistic missile targets at a low marginal cost per shot. The shipboard fuel
needed to generate the electricity for firing an electrically powered laser would
cost less than a dollar per shot (some sources express the cost in pennies per
shot).3 In contrast, the Navy’s short-range air-defense interceptor missiles cost

2 In discussions of other types of defense systems, the terms short range and long range could have considerably
different meanings. In discussions of the ranges of military airplanes or ballistic missiles, for example, the term short
range might mean a range of hundreds of miles, while references to longer ranges could refer to ranges of thousands of
miles.
3 See, for example, Geoff Fein, “Navy Leveraging Commercial Lasers To Shoot Down UAVs,” Defense Daily, May
11, 2010: 3-4.
Congressional Research Service
2

Navy Shipboard Lasers for Surface, Air, and Missile Defense

hundreds of thousands (or more than a millions dollars) each, and its longer-
range air- and missile-defense interceptor missiles cost several million dollars
each. A laser can give a ship an alternative to using an expensive interceptor
missile to achieve a “hard kill”4 against a much less expensive target, such as an
unsophisticated unmanned air vehicle (UAV). A low marginal cost per shot could
permit the Navy to dramatically improve the cost exchange ratio—the cost of the
attacker’s weapon compared to the Navy’s marginal cost per shot for countering
that weapon. Cost exchange ratios currently often favor the attacker, sometimes
very significantly. Converting unfavorable cost exchange ratios into favorable
ones could be critical for the Navy’s ability in coming years to mount an
affordable defense against adversaries that choose to deploy large numbers of
small boats, UAVs, anti-ship cruise missiles (ASCMs), and anti-ship ballistic
missiles (ASBMs) for possible use against U.S. Navy ships.
Deep magazine. Navy surface ships can carry finite numbers of interceptor
missiles in their missile launch tubes. Once a Navy surface ship’s interceptors are
fired, loading a new set of interceptors onto the ship would require the ship to
temporarily withdraw from the battle. The Phalanx Close-In Weapon System
(CIWS) that is installed on Navy surface ships—a radar-controlled Gatling gun
that fires bursts of 20mm shells—similarly can engage a finite number of targets
before it needs to be reloaded, which takes a certain amount of time. In contrast,
an electrically powered laser can be fired again and again, as long as the ship has
fuel to generate electricity (and sufficient cooling capacity to remove waste heat
from the laser). A laser would give a ship a weapon with a deep (some observers
say virtually unlimited) magazine capacity. Lasers could permit Navy surface
ships to more effectively defend themselves against adversaries with more
weapons and decoys than can be handled by the ships’ onboard supplies of
interceptor missiles and CIWS ammunition. A ship equipped with a laser, for
example, could use the laser to counter an initial wave of decoys while
conserving the ship’s finite supply of interceptor missiles and CIWS ammunition
for incoming weapons that are best countered by those systems. Future ships
designed with a combination of lasers and missile-launch tubes could be smaller,
and thus less expensive to procure, than future ships designed with no lasers and
a larger number of missile-launch tubes.
Fast engagement times. Light from a laser beam can reach a target almost
instantly (eliminating the need to calculate an intercept course, as there is with
interceptor missiles) and, by remaining focused on a particular spot on the target,
cause disabling damage to the target within seconds. After disabling one target, a
laser can be redirected in several seconds to another target. Fast engagement
times can be particularly important in situations, such as near-shore operations,
where missiles, rockets, artillery shells, and mortars could be fired at Navy ships
from relatively close distances.
Ability to counter radically maneuvering air targets. Lasers can follow and
maintain their beam on radically maneuvering air targets (such as certain

4 A “hard kill” involves destroying the attacking weapon in some manner. A “soft kill” involves confusing the weapon
through decoys or other measures, so that it misses its intended target.
Congressional Research Service
3

Navy Shipboard Lasers for Surface, Air, and Missile Defense

ASCMs) that might stress the maneuvering capabilities of Navy interceptor
missiles.
Precision engagement and reduced risk of certain kinds of collateral damage
in port areas. Lasers are precision-engagement weapons—the light spot from a
laser, which might be several inches in diameter, affects what it hits, while
generally not affecting (at least not directly) separate nearby objects. Navy ships
in overseas ports might be restricted in their ability to use the CIWS to defend
themselves against mortars and rockets out of concern that CIWS shells that are
fired upward but miss the target would eventually come back down, possibly
causing collateral damage in the port area. In contrast, light from an upward-
pointing laser that does not hit the target would continue flying upward in a
straight line, which can reduce the chance of causing collateral damage to the
port area.
Additional uses; graduated responses. Lasers can perform functions other than
destroying targets, including detecting and monitoring targets and producing non-
lethal effects, including reversible jamming of electro-optic (EO) sensors.5 Lasers
offer the potential for graduated responses that range from warning targets to
reversibly jamming their systems, to causing limited but not disabling damage (as
a further warning), and then finally causing disabling damage.
Limitations
Potential limitations of shipboard lasers for countering surface, air, and ballistic missile targets
include the following:
Line of sight. Since laser light tends to fly through the atmosphere on an
essentially straight path, shipboard lasers would be limited to line-of-sight
engagements, and consequently could not counter over-the-horizon targets or
targets that are obscured by intervening objects. This limits in particular potential
engagement ranges against small boats, which can be obscured by higher waves,
or low-flying targets. Even so, lasers can rapidly reacquire boats obscured by
periodic swells, and more generally might be able to engage targets at longer
ranges than certain existing shipboard gun systems. An airborne mirror, perhaps
mounted on an aerostat,6 could bounce light from a shipboard laser, so as to
permit non-line-of-sight engagements; implementing such an arrangement would
add cost and technical challenges, and the aerostat could be damaged by a
misaimed shipboard laser or enemy attack.
Atmospheric absorption, scattering, and turbulence; not an all-weather
solution. Substances in the atmosphere—particularly water vapor, but also things
such as sand, dust, salt particles, smoke, and other air pollution—absorb and
scatter light from a shipboard laser, and atmospheric turbulence can defocus a
laser beam. These effects can reduce the effective range of a laser. Absorption by
water vapor is a particular consideration for shipboard lasers because marine

5 Reversible jamming means that the jamming does not damage the sensor, and that the sensor can resume normal
operations once the jamming ends.
6 An aerostat is a lighter-than-air object, such as a dirigible or balloon, that can stay stationary in the air.
Congressional Research Service
4

Navy Shipboard Lasers for Surface, Air, and Missile Defense

environments feature substantial amounts of water vapor in the air.7 There are
certain wavelengths of light (i.e., “sweet spots” in the electromagnetic spectrum)
where atmospheric absorption by water vapor is markedly reduced.8 Lasers can
be designed to emit light at or near those sweet spots, so as to maximize their
potential effectiveness. Absorption generally grows with distance to target,
making it in general less of a potential problem for short-range operations than
for longer-range operations. Adaptive optics, which make rapid, fine adjustments
to a laser beam on a continuous basis in response to observed turbulence, can
counteract the effects of atmospheric turbulence. Even so, lasers might not work
well, or at all, in rain or fog, preventing lasers from being an all-weather solution.
Thermal blooming. A laser that continues firing in the same exact direction for a
certain amount of time can heat up the air it is passing through, which in turn can
defocus the laser beam, reducing its ability to disable the intended target. This
effect, called thermal blooming, can make lasers less effective for countering
targets that are coming straight at the ship, on a constant bearing (i.e., “down-the-
throat” shots). Other ship self-defense systems, such as interceptor missiles or a
CIWS, might be more suitable for countering such targets. Most tests of laser
systems have been against crossing targets rather than “down-the-throat” shots.
In general, thermal blooming becomes more of a concern as the power of the
laser beam increases.
Saturation attacks. Since a laser can attack only one target at a time, requires
several seconds to disable it, and several more seconds to be redirected to the
next target, a laser can disable only so many targets within a given period of time.
This places an upper limit on the ability of an individual laser to deal with
saturation attacks—attacks by multiple weapons that approach the ship
simultaneously or within a few seconds of one another. This limitation can be
mitigated by installing more than one laser on the ship, similar to how the Navy
installs multiple CIWS systems on certain ships.9
Hardened targets and countermeasures. Less-powerful lasers—that is, lasers
with beam powers measured in kilowatts (kW) rather than megawatts (MW)10—
can have less effectiveness against targets that incorporate shielding, ablative
material, or highly reflective surfaces, or that rotate rapidly (so that the laser spot
does not remain continuously on a single location on the target’s surface) or
tumble.11 Small boats could employ smoke or other obscurants to reduce their

7 For further discussion, see P. Sprangle, J.R. Peñano, A. Ting, and B. Hafizi, “Propagation of High-Energy Lasers in a
Maritime Atmosphere,” NRL Review 2004. (Accessed online at http://www.nrl.navy.mil/research/nrl-review/2004/
featured-research/sprangle/.)
8 Lasers being developed for potential shipboard use produce light with wavelengths in the near-infrared portion of the
spectrum. Sweet spots in this part of the spectrum include wavelengths of 0.87 microns, 1.045 microns, 1.24 microns,
1.62 microns, 2.13 microns, and 2.2 microns. (Other sources, such as the research paper cited in footnote 7, cite
somewhat different figures for sweet spot wavelengths, depending in part on whether sweet spot is for water vapor
alone, or for multiple sources of atmospheric absorption and scattering.)
9 The Navy installs multiple CIWS systems on certain ships not only to improve their ability to handle a saturation
attack, but also to ensure that each ship has full (i.e., 360-degree CIWS) coverage around the ship. A desire for 360-
degree laser coverage could be another reason for installing multiple lasers on a ship.
10 For a discussion of laser power levels, see “Required Laser Power Levels for Countering Targets.”
11 A March 2014 press report states, “Laser weapons like those developed by the United States pose little threat to [the
Chinese military] ... because mainland [Chinese] researchers have pioneered coatings that can deflect beams and render
(continued...)
Congressional Research Service
5

Navy Shipboard Lasers for Surface, Air, and Missile Defense

susceptibility to laser attack. Measures such as these, however, can increase the
cost and/or weight of a weapon, and obscurants could make it more difficult for
small boat operators to see what is around them, reducing their ability to use their
boats effectively.
Risk of collateral damage to aircraft and satellites. Since light from an
upward-pointing laser that does not hit the target would continue flying upward
in a straight line, it could pose a risk of causing unwanted collateral damage to
aircraft and satellites.12
In addition to the above points, a shipboard laser, like other shipboard systems, would take up
space on a ship, use up some of the ship’s weight-carrying capacity, create a load on the ship’s
electrical power and cooling systems, and possibly alter the ship’s radar cross section. These
considerations—referred to collectively as ship impact—can become significant when
considering whether to backfit lasers onto existing ships, or whether to incorporate lasers into
new ship designs.13
Potential Targets for Shipboard Lasers
Potential targets for shipboard lasers include the following:
• electro-optical (EO) sensors, including those on anti-ship missiles;
• small boats (including so-called “swarm boats”)14 and other watercraft (such as
jet skis);
• rockets, artillery shells, mortars (sometimes collectively referred to as RAM);
• UAVs;
• manned aircraft;
• ASCMs; and
• ballistic missiles, including ASBMs.
Small boats, rockets, artillery shells, and mortars can be a particular concern for Navy surface
ships during operations close to shore. Iran has acquired large numbers of swarm boats for

(...continued)
them harmless, mainland scientists say.” (Stephen Chen, US Lasers? PLA Preparing To Raise Its Deflector Shields,”
South China Morning Post (www.scmp.com), March 10, 2014.) Another observer notes, “Lethality or desired levels of
military effect are direct functions of the applied energy flux at the target and the ‘race’ between carriage of heat away
from the material and bulk heating in a manner that causes the failure of the materials ... at high flux levels, surface
ablation processes can create a dense outgassing cloud above the surface that absorbs the applied laser energy away
from the surface thus acting to protect the target against vast power increases.” (E-mail from James Kiessling, DT&E
Space and Missile Defense Systems, March 13, 2014.)
12 For more on the issue of collateral damage to satellites, see Appendix J.
13 For an additional (and somewhat similar) discussion of the potential advantages and limitations of lasers, see Richard
J. Dunn, III, Operational Implications of Laser Weapons, Northrop Grumman Analysis Center Papers, September
2005, pp. 10-12.
14 Swarm boats are small, fast boats that attack a larger ship by operating in packs, or swarms, so as to present the
larger ship with a complex situation of many hostile platforms that are moving rapidly around the ship in different
directions.
Congressional Research Service
6

Navy Shipboard Lasers for Surface, Air, and Missile Defense

potential use during a crisis or conflict against U.S. Navy ships seeking to enter or operate in the
Persian Gulf. RAM weapons are widely proliferated to both state and non-state organizations.
UAVs, including relatively simple and inexpensive models, can be used to collect and transmit
targeting data on Navy ships, attack Navy ships directly by diving into them, and be armed to
attack Navy ships at a distance. ASCMs are widely proliferated to state actors, and were also
reportedly used by the non-state Hezbollah organization in 2006 to attack an Israeli warship.
China has developed an ASBM. Lasers that are not capable of disabling ballistic missiles could
nevertheless augment ballistic missile defense operations by being used for precision tracking and
imaging.
Required Laser Power Levels for Countering Targets
A laser’s ability to disable a target depends in large part on the power and beam quality of its light
beam. The power of the light beam is measured in kilowatts (kW) or megawatts (MW). Beam
quality (BQ) is a measure of how well focused the beam is.15 Additional factors affecting a laser’s
ability to disable a target include:
• atmospheric absorption, scattering, and turbulence,16
• jitter—the degree to which the spot of laser light jumps around on the surface of
the target due to vibration or other movement of the laser system,17 and
• target design features, which can affect a target’s susceptibility to laser damage.
Table A-1 in Appendix A summarizes some government and industry perspectives regarding
power levels needed to counter certain targets. Although these perspectives differ somewhat, the
following conclusions might be drawn from the table regarding approximate laser power levels
needed to affect certain targets:
Lasers with a power level of about 10 kW might be able to counter some UAVs
at short range, particularly “soft” UAVs (i.e., those with design features that
make them particularly susceptible to laser damage).
Lasers with power levels in the tens of kilowatts could have more capability
for countering UAVs, and could counter at least some small boats as well.
Lasers with a power level of about 100 kW would have a greater ability for
countering UAVs and small boats, as well as some capability for countering
rockets, artillery, and mortars.

15 A laser with perfect BQ – meaning that the laser’s light spot is focused to the physical diffraction limit – is said to
have a BQ of 1.0. A beam that is focused to the physical diffraction limit is focused as well as the laws of nature allow.
Lasers with the wavelengths considered in this report that are focused to the physical diffraction limit would, if fired in
a vacuum, experience very little spreading out of the laser spot as the beam travels further and further from the source.
A BQ of 2.0 means that the laser’s light spot at a given range is twice as large in diameter as an otherwise-same laser
with a BQ of 1. The Navy considers a BQ of 1.1 to 5 to be high, and a BQ of 5.1 to 20 to be moderate. Achieving a BQ
of 1 to 5 generally adds complexity and cost to the system. In general, the longer the range to the target, the more
important BQ becomes.
16 As discussed earlier, atmospheric absorption, scattering, and turbulence are affected by the laser’s light wavelength
and the use of adaptive optics.
17 Jitter becomes more important as BQ improves and range increases.
Congressional Research Service
7

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Lasers with power levels in the hundreds of kilowatts could have greater
ability for countering targets mentioned above, and could also counter manned
aircraft and some missiles.
Lasers with power levels in the megawatts could have greater ability for
countering targets mentioned above—including supersonic ASCMs and ballistic
missiles—at ranges of up to about 10 nautical miles.
In addition to the points above, one Navy briefing stated that lasers with power levels above 300
kW could permit a ship to defend not only itself, but other ships in the area as well (a capability
referred to as area defense or escort operations or battle group operations).
Types of Lasers Being Developed for Potential Shipboard Use
The Navy and DOD are developing three principal types of lasers for potential use on Navy
surface ships:
• fiber solid state lasers (SSLs),
• slab SSLs, and
• free electron lasers (FELs).
All three types are electrically powered.18 Each type is discussed briefly below. Additional
information on each type is presented in Appendix C through Appendix F.
Fiber Solid State Lasers (Fiber SSLs)
Fiber solid state lasers (SSLs) are widely used in industry—tens of thousands are used by auto
and truck manufacturing firms for cutting and welding metal. Consequently, they are considered
to be a very robust technology.
Laser Weapon System (LaWS)
One fiber SSL prototype demonstrator developed by the Navy, called the Laser Weapon System
(LaWS)
, had a beam power of 33 kW. The Navy at one point envisioned LaWS being used for
operations such as disabling or reversibly jamming EO sensors, countering UAVs and EO guided
missiles, and augmenting radar tracking. The Navy envisioned installing LaWS on a ship either
on its own mount or as an add-on to an existing Phalanx Close-In Weapon System (CIWS)
mount.19 The Navy funded work to integrate LaWS with CIWS, to support the latter option.
The Navy has stated the following regarding tests of LaWS:

18 Some military lasers, such as the Air Force’s Airborne laser (ABL), are chemically powered. Development work on
potential shipboard lasers focuses on electrically powered lasers because such lasers can be powered by a ship’s
existing electrical power system, whereas a chemically powered laser would require the ship to be periodically
resupplied with the chemicals used by the laser. Resupplying the ship with the chemicals could require the ship to
temporarily remove itself from the battle. In addition, the Navy would need to establish a new logistics train to provide
the chemicals to Navy surface ships, and loading and storing the chemicals on ships would create a handling risk for
crew members, since the chemicals in question are toxic.
19 As mentioned earlier the Phalanx CIWS is a radar-controlled Gatling gun that fires bursts of 20mm shells.
Congressional Research Service
8

Navy Shipboard Lasers for Surface, Air, and Missile Defense

• In June 2009, LaWS successfully engaged five threat-representative UAVs20 in
five attempts in tests in combat-representative scenarios in a desert setting at the
Naval Air Weapons Station at China Lake, in southern California.
• In May 2010, LaWS successfully engaged four threat-representative UAVs in
four attempts in combat-representative scenarios at a range of about one nautical
mile in an over-the-water setting conducted from San Nicholas Island, off the
coast of southern California. LaWS during these tests also demonstrated an
ability to destroy materials used in rigid-hull inflatable boats (RHIBs—a type of
small boat) at a range of about half a nautical mile, and to reversibly jam and
disrupt electro-optical/infrared sensors.21
• Between July and September 2012, LaWS successfully engaged three UAVs in
three attempts in tests during which the system was aboard the Arleigh Burke
(DDG-51) class destroyer Dewey (DDG-105) in waters off San Diego.22
The Navy at one point envisioned scaling up the power of the LaWS beam to about 100 kW by
FY2014. How much beyond 100 kW the system could eventually be scaled up to was not clear,
but the system was not generally viewed as having the potential for being scaled up to megawatt
power levels.
The Navy stated that as of June 2010, the Technology Readiness Level (TRL) of the LaWS
prototype “is approaching 6, based on a system prototype demonstration in a relevant (maritime)
environment.”23 The Navy estimated that it might cost roughly $150 million to develop LaWS to
TRL 7, meaning the demonstration of a system prototype in an operational environment. The
Navy considered the LaWS effort to be ready for conversion into a program of record. The Navy
estimated that production copies of the LaWS system could be installed and procured as additions
to ship CIWS mounts for a total cost of roughly $17 million per CIWS mount.24

20 Threat-representative means that the UAV is generally similar in design and capabilities to UAVs operated by
potential adversaries.
21 For a Navy press release about this test, see NAVSEA (Naval Sea Systems Command) press release dated May 28,
2010, and entitled “Navy Laser Destroys Unmanned Aerial Vehicle in a Maritime Environment,” accessed online at
http://www.navsea.navy.mil/PR2010/PressRelease_20100528_Laser%20Destroys%20UAV.pdf. The UAVs engaged in
these tests were BQM-147s, which various sources describe as low-cost, propeller-driven UAVs with a length of about
5 feet, a wingspan of about 8 feet, and a maximum speed of 100 knots or less.
22 Mike McCarthy, “Navy Deploying Laser For Taking Out Drones,” Defense Daily, April 9, 2013; Graham Warwick,
“U.S. Navy Planning Gulf Deployment For Laser Weapon,” Aerospace Daily & Defense Report, April 9, 2013: 6.
23 Source: Navy information paper dated June 6, 2011, provided by the Navy to CRS and CBO on June 14, 2011. DOD
uses TRL ratings to characterize the developmental status of many weapon technologies. DOD TRL ratings range from
1 (basic principles observed and reported) to 9 (actual system proven through successful mission operations). For the
definitions of all 9 DOD TRL ratings, see Appendix H.
24 The $17 million figure was provided in a Navy briefing to CRS. A May 11, 2010, press report quoted a Navy official
as estimating the cost at $15 million:
“I think the total system, when we finally get it out there, will be on the order of $15 million per
system and then there will be no ordnance costs, no logistics tail for maintaining the ordnance, no
depots to overhaul ordnance, and no fire suppression as you move this ordnance around,” [Capt.
Dave Kiel, Naval Sea Systems Command (NAVSEA) directed energy and electric weapons
program manager] said.
(Geoff Fein, “Navy Leveraging Commercial Lasers To Shoot Down UAVs,” Defense Daily, May
11, 2010: 3-4.)
Congressional Research Service
9

Navy Shipboard Lasers for Surface, Air, and Missile Defense

The Navy plans to install a LaWS system on the USS Ponce, a ship operating in the Persian Gulf
as an interim Afloat Forward Staging Base (AFSB[I]), in the summer of 2014 to conduct
continued evaluation of shipboard lasers in an operational setting. For further discussion, see
“LaWS to Be Installed on USS Ponce” in “Recent Developments” below.)
For additional information on fiber SSLs and LaWS, see Appendix C.
Tactical Laser System
Another Navy fiber SSL effort is the Tactical Laser System (TLS)—a laser with a beam power
of 10 kW that is designed to be added to the Mk 38 25 mm machine guns installed on the decks
of many Navy surface ships.25 TLS would augment the Mk 38 machine gun in countering targets
such as small boats; it could also assist in providing precise tracking of targets. The Navy in
March 2011 awarded a $2.8 million contract to BAE to develop a prototype of the TLS over a 15-
month period.26 Boeing is collaborating with BAE on the project. The TLS effort was initiated
following a January 2008 incident involving Iranian small boats.
A March 26, 2012, press report states that “[Michael] Rinn, [Boeing’s vice president for directed
energy systems], said the project, which gets a small amount of Navy funding and is
supplemented by internal investments from both companies, has had several successes over the
past few years. Field testing of the major components last summer at Eglin Air Force Base in
Florida showed the system could distinguish between friendly and enemy activities in both
daytime and nighttime, for example.” The report states that full system testing of the laser was
scheduled for the summer of 2012.27
A January 28, 2013, press report states that “BAE Systems and Boeing are pushing their Mark 38
Tactical Laser System through intense internally-funded testing, hoping to get onto a ship for at-
sea testing as soon as one is available, company officials said earlier this month.” The article
stated that Mark Rinn, a Boeing official, “said testing in December [2012] went well and showed
successful engagements at ‘several thousands of meters.’ He had hoped to include unmanned
aerial vehicles in the set of targets for the Mark 38 Tactical Laser System—the weapon system
has already shot at targets on land and on water—but the companies could not get permission in
time. He said that they would have permission for counter-UAV testing before the next round of
tests this spring.”28
For additional information on TLS, see Appendix D.

25 Carlo Munoz, “New Laser-Based Weapon For Navy Fleet Protection Operations In The Works,” Defense Daily,
April 11, 2011. See also Marc Selinger, “Lasers on the High Seas,” http://www.boeing.com, November 28, 2011,
accessed November 28, 2011, at http://www.boeing.com/Features/2011/11/bds_tls_11_28_11.html.
26 BAE Systems press release dated April 7, 2011, entitled “BAE Systems Selected to Demonstrate Tactical Laser
System for the U.S. Navy;” Carlo Munoz, “New Laser-Based Weapon For Navy Fleet Protection Operations In The
Works,” Defense Daily, April 11, 2011.
27 Megan Eckstein, “FEL Looks Good At CDR, But Project Halted In Favor of SSL Development,” Inside the Navy,
March 26, 2012.
28 Megan Eckstein, “BAE, Boeing Pushing To Get Tactical Laser System To At-Sea Testing,” Inside the Navy, January
28, 2013.
Congressional Research Service
10

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Slab Solid State Lasers (Slab SSLs)
DOD has pursued multiple efforts to develop slab SSLs for military use. Among these was the
Maritime Laser Demonstration (MLD), a prototype laser weapon developed as a rapid
demonstration project under DOD’s Joint High Power SSL (JHPSSL) program. MLD leveraged
development work on slab SSLs done elsewhere in DOD under the JHPSSL program. In March
2009, Northrop demonstrated a version of MLD that coherently combined seven slab SSLs, each
with a power of about 15 kW, to create a beam with a power of about 105 kW.
In July 2010, the ability of MLD to track small boats in a marine environment was tested at
NSWC Port Hueneme, CA.29 In late August and early September 2010, MLD was tested in an
over-the-water setting at the Navy’s Potomac River Test Range against stationary targets,
including representative small boat sections.30 In November 2010, an at-sea test of the system
against small boat targets reportedly was stopped midway because one of the system’s
components needed to be replaced.31 The test was resumed in April 2011, and on April 6, 2011,
the system successfully engaged a small target vessel. According to the Navy, this was the first
time that a laser of that energy level had been put on a Navy ship, powered from that ship, and
used to counter a target at range in a maritime environment.32 In May 2011, Northrop stated that it
could build the first unit of a full-power engineering and manufacturing development (EMD)
version of the weapon within four years, if the Navy could find the resources to fund the effort.33
Scaling up a slab laser to a total power of 300 kW is not considered to require any technological
breakthroughs. Supporters of slab SSLs such as MLD believe they could eventually be scaled up
further, to perhaps 600 kW. Slab SSLs are not generally viewed as easily scalable to megawatt
power levels.
The Navy stated that as of December 2010, MLD was at a Technology Readiness Level (TRL) of
5, meaning component and/or breadboard validation in a relevant environment.34
For additional information on slab SSLs and MLD, see Appendix E.

29 See Northrop Grumman press release dated July 26, 2010, and entitled “Northrop Grumman-Built Maritime Laser
Demonstration System Proves Key Capabilities for Shipboard Operations, Weaponization,” accessed online at
http://www.irconnect.com/noc/press/pages/news_releases.html?d=197321.
30 See Northrop Grumman press release dated September 30, 2010, and entitled “Northrop Grumman-Built Maritime
Laser Demonstration System Shows Higher Lethality, Longer Ranges at Potomac River Test Range; U.S. Navy Solid-
State Laser’s Mature Technology is Ready for Marine Environment;” accessed online at http://www.irconnect.com/
noc/press/pages/news_releases.html?d=202703.
31 Andrew Burt, “Navy’s First At-Sea Maritime laser Weapon Test Encounters Delays,” Inside the Navy, November 15,
2010.
32 Geoff S. Fein, “MLD Test Moves Navy a Step Closer to Lasers for Ship Self-Defense,” April 8, 2011 (Office of
Naval Research news release, accessed online at http://www.onr.navy.mil/en/Media-Center/Press-Releases/2011/
Maritime-Laser-MLD-Test.aspx.)
33 Graham Warwick, “Northrop To Offer High-Power Ship Laser Within Four Years,” Aerospace Daily & Defense
Report
, May 16, 2011: 4.
34 Source: Navy information paper dated December 3, 2010, provided by the Navy to CRS on December 3, 2010. As
mentioned in footnote 23, DOD uses TRL ratings to characterize the developmental status of many weapon
technologies. DOD TRL ratings range from 1 (basic principles observed and reported) to 9 (actual system proven
through successful mission operations). For the definitions of all 9 DOD TRL ratings, see Appendix H.
Congressional Research Service
11

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Free Electron Lasers (FELs)
Unlike slab SSLs, which are being developed by multiple U.S. military services, FELs are being
developed within DOD solely by the Navy, in part because they would be too large to be installed
on Army or Marine Corps ground vehicles or Air Force tactical aircraft, and in part because an
FEL’s ability to change its wavelength so as to match atmospheric transmission sweet spots
makes it particularly suited for operations in a marine environment. The basic architecture of an
FEL offers a clear potential for scaling up to power levels of one or more megawatts.
A 14.7 kW FEL has been developed; it has not been moved out of a laboratory setting or fired at
an operational moving target. The Office of Naval Research (ONR) had planned to follow this
with the development, as an Innovative Naval Prototype (INP),35 of a 100 kW FEL; the work was
scheduled to be performed during FY2010-FY2015.36 Developing a 100 kW FEL would reduce
the risks associated with developing a megawatt-class FEL. A March 26, 2011, press report,
however, states that “the Navy is putting the project on the back burner as it focuses on a solid-
state laser as the quickest way to get a directed-energy weapon to the fleet.” The report states that
“[Roger] McGinnis, [program executive for INPs at ONR’s Naval Air Warfare and Weapons
Department], said the Navy had previously wanted to pursue a 100 kilowatt FEL gun as an
intermediate step toward the megawatt gun but decided to instead focus on maturing the critical
technology components with an Energy department lab or small industry partners.... ”37
The Navy states that as of December 2010, FEL was at a Technology Readiness Level (TRL) of 4
(meaning component and/or breadboard validation in a laboratory environment).38
For additional information on FEL, see Appendix F.
Navy Surface Fleet’s Generalized Vision for Shipboard Lasers
The Navy’s surface fleet has a three-phase generalized vision for shipboard high-energy lasers
that is summarized in Table 1. Although this generalized vision refers to lasers of certain power
levels and potential time frames for installing lasers on Navy ships, it is not a program of record
for procuring a production version of a shipboard laser.

35 For a description of INPs, see Appendix G.
36 A low power Terahertz Sensor FEL is also being developed under the INP, with a prototype scheduled to be
available in FY2015. ONR states that “Possible uses of this system include [target] interrogation, sensing and
discrimination of high value targets, and weapons of mass destruction detection.”
37 Megan Eckstein, “FEL Looks Good At CDR, But Project Halted In Favor of SSL Development,” Inside the Navy,
March 26, 2012.
38 Source: Navy information paper dated December 3, 2010, provided by the Navy to CRS on December 3, 2010. As
mentioned in footnote 23, DOD uses TRL ratings to characterize the developmental status of many weapon
technologies. DOD TRL ratings range from 1 (basic principles observed and reported) to 9 (actual system proven
through successful mission operations). For the definitions of all 9 DOD TRL ratings, see Appendix H.
Congressional Research Service
12

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Table 1. Surface Navy’s Generalized Vision for Shipboard High-Energy Lasers
(Draft version as of May 2011)

Initial capability
Added capability
Added capability
Laser’s beam power
60 kW to 100 kW
300 kW to 500 kW
> 1 MW
Missions
Countering UAVs, EO-
Capabilities in previous
Capabilities in previous
guided ASCMs, enemy ISR
column, but with added
column, but a capability for
systems, and swarm boats,
range and a capability to
full-self defense operations
counter ASCMs flying a
against ASCMs and
and
crossing path toward
maneuvering reentry
used for precise tracking to another ship.
vehicles (MaRVs), and full
support air defense
BMD missions
missions conducted by
electromagnetic rail gun
(EMRG), ballistic missile
defense (BMD) missions,
augmenting the ship’s radar,
and enhancing general
situational awareness
Required ship power (in kW
<400 kW and 68 tons
<2.5MW and 560 tons
~10-20 MW and ~1,400
or MW) and cooling capacity
tons
(in tons)a
Current weapon system TRL
5
4
2-3
Earliest potential IOC
2017
~2022
after 2025
Applicable ships
Could be backfit onto
Could be installed on
Could be installed on
existing ships, as well as
future surface combatants,
future surface combatants,
installed on new ships
including potentially the
ships with integrated
Flight III DDG-51
propulsion systems, and
aircraft carriers
Source: U.S. Navy briefing slide dated May 20, 2011, and provided to CRS and CBO at a briefing on that date.
a. Power and cooling requirements assume continuous firing of the laser with a 67% duty cycle (i.e., the laser
is firing 67% of the time).
Remaining Technical Challenges
Although Navy and DOD research on military lasers has overcome many of the technical
challenges associated with developing shipboard lasers, a number of challenges remain.
Remaining technical challenges for potential shipboard lasers can be grouped into four broad
categories:
• scaling up beam power to higher levels while maintaining or improving beam
quality and addressing thermal management (the removal of waste heat from the
gain medium);
• turning prototype and demonstration versions of lasers into versions that are
suitable for series production, shipboard installation, and shipboard operation and
maintenance over many years of use;
• engineering other parts of a complete laser weapon system, including target
detection and tracking, and beam pointing; and
Congressional Research Service
13

Navy Shipboard Lasers for Surface, Air, and Missile Defense

• integrating lasers with ship power and cooling systems, and with ship combat
systems (i.e., a ship’s integrated collection of sensors, computers, displays, and
weapons).
Although these challenges are stated briefly here, they are not trivial. Skeptics might argue that
certain past DOD laser development efforts proved over-optimistic in terms of projections for
overcoming technical challenges and producing operational weapons. In spite of decades of
development work, these skeptics might note, DOD has not deployed an operational high-energy
laser weapon system.
Recent Developments
Naval Directed Energy Steering Group
In June 2012, it was reported that the Navy in December 2011 formed a Naval Directed Energy
Steering Group (NDESG) to develop a naval directed energy vision, strategy, and roadmap. The
December 12, 2011, Navy memorandum establishing the steering group states in part:
A key to future Navy and Marine Corps war fighting capabilities is the efficient, effective
and rapid development, acquisition, and fielding of advanced technologies having game-
changing capabilities across a range of mission areas. Directed Energy Weapon (DEW)
technologies, including lasers and high power microwave (HPM) weapons, may offer our
naval forces such game-changing potential....
The Naval DE Steering Group (NDESG) is formed as a Secretary of the Navy (SECNAV)
initiative to deliver a synchronized, fiscally-informed strategy that aligns DE investments
with roadmaps across the Doctrine, Organization, Training, Material, Leadership and
Education, Personnel and Facilities (DOTMLPF) spectrum [of naval activities] to address
near-term fleet capability gaps and the long-range vision for the implementation of DE in the
fleet. The NDESG will be the formal engine to drive this effort....
The NDESG will have the following objectives:
a. Develop a DON Naval DE Vision and Strategy.... A Directed Energy vision is necessary
to provide DON leadership’s depiction of desired DEW capabilities and DE countermeasures
as deployed and employed across U.S. naval forces. A supporting DE strategy would be used
to establish strategic goals, guiding principles, mission area priorities, roles and
responsibilities and overarching objectives regarding the acquisition and fielding of DEW
across the Navy and Marine Corps.
b. Develop a comprehensive DE roadmap... based on the overarching vision and strategy.
The proposed roadmap would address the prioritized mission needs across all naval forces
and the associated DE technologies than can be fielded to satisfy those mission needs in the
near-term (2-5) years, mid-term (5-10 years) and far-term (10-20 years).
c. Provide assessments on Science & Technology (S&T)/Research & Development (R&D)
and oversee the development and transition of DE systems and technologies to the Fleet,
Congressional Research Service
14

Navy Shipboard Lasers for Surface, Air, and Missile Defense

including non-material efforts39 to integrate these new capabilities into existing operational
concepts and procedures....
The NDESG will provide a draft vision and strategy with initial plan of actions and
milestones to the UNDERSECNAV [Under Secretary of the Navy] within 90 days of the
promulgation of this charter.40
Directed Energy Vision for U.S. Naval Forces
The directed energy vision and the directed energy strategy called for in paragraph (a) of the
memorandum quoted in the previous section have been developed. The text of the vision
statement is as follows:
A Directed Energy Vision for U.S. Naval Forces
Guidance from the Secretary of Defense promulgated in Priorities for 21st Century Defense
in January 2012 directs the Department to “sustain key streams of innovation that may
provide significant long-term payoffs.” Directed-energy (DE) technology not only offers the
prospect for a major return on investment over the long term, it could begin paying
significant dividends within the current future years defense plan (FYDP) by addressing
immediate combatant commander requirements and enabling fleet experimentation focused
on emerging threats, including anti-access and area-denial challenges.
Military applications of DE technology hold growing promise for gaining and sustaining
tactical, operational, and strategic advantage for U.S. forces across the full range of military
operations. They could have significant effects across multiple dimensions of the battlespace:
maritime, air, land, space, and cyberspace. Directed energy weapons (DEWs) offer several
potentially “game changing” advantages: very rapid engagement, low cost per engagement,
essentially infinite magazines, and low total ownership costs. DEWs and their associated
platform integration technologies must be properly resourced across the FYDP to ensure that
our Navy and Marine Corps Team maintains its warfighting edge over prospective
adversaries, including those aggressively pursuing DEWs.
DEWs affect a target by imparting non-kinetic, or electromagnetic, energy. DEW
technologies can operate in any part of the electromagnetic spectrum and typically fall into
the categories of either lasers (i.e., low, medium, or high power) or high-power radio
frequency (i.e., high-power microwave, radio frequency (RF), microwave, and millimeter
wave (MMW)). DEW technologies and systems use electromagnetic energy to cause
persistent disruption, reversible effects or permanent damage by attacking target materials,
electronics, optics, antennas, and sensors, including non-lethal counter-personnel and
counter-materiel applications. The ability of these weapons to incapacitate, disrupt, damage,
disable, or destroy targets has been proven with numerous demonstrations of lethal and non-
lethal effects carried out in laboratory, field testing and evaluation, and successful
employment on the battlefield.

39 The term non-material efforts refers to actions other than the acquisition of new or modernized equipment, such as
making changes in doctrine or tactics.
40 Memorandum dated December 12, 2011, from the Under Secretary of the Navy, to various Navy offices, on the
subject: “Naval Directed Energy Steering Group Charter,” posted at InsideDefense.com (subscription required) June
18, 2012. See also: Megan Eckstein, “Naval Directed-Energy Steering Group Outlining Future Of DE Weapons,”
Inside the Navy, June 15, 2012.
Congressional Research Service
15

Navy Shipboard Lasers for Surface, Air, and Missile Defense

The DoN [Department of the Navy] will focus its DE investments on those technologies
that address critical Navy and Marine Corps capability gaps.
Given the surface fleet’s
ability to overcome the technical challenges associated with the military exploitation of high
power, long range DEW—including power, cooling, weight, and volume requirements—it is
the logical vanguard for demonstrating the potential of first-generation weapons. Across the
spectrum of DEWs, early applications will focus on supporting forward deployed forces to
defeat Improvised Explosive Devices (IEDs); artillery, mortars, and rockets; intelligence,
surveillance and reconnaissance systems; fast-attack craft; fixed and rotary-wing aviation;
and subsonic anti-ship cruise missiles. The longer term objective is to field higher power
systems capable of defeating supersonic cruise missiles and selected ballistic missiles.
As the technology matures to increase energy efficiency and reduce form factors, DEWs will
be integrated into ground vehicles to support fire and maneuver in contested environments,
to include conducting low-collateral damage strikes in built-up terrain, employing non-lethal
DEW to segregate and isolate enemy from civilians, and defending against increasingly
ubiquitous guided rockets, artillery, mortars, and missiles. DE applications for fixed- and
rotary-wing aircraft will focus both on offensive and defensive air-to-air, air-to-surface, and
air-to-ground missions. Early applications will focus on countering surface-to-air and small
boat threats, as well as conducting precision strikes with mission-tailored lethality.
The DoN will field initial DEW capabilities in the near-term to provide our fleet and
operating forces with the ability to address identified critical mission capability gaps
while learning invaluable fielding and employment lessons that will inform our way
ahead.
Innovation has been the hallmark of U.S. Naval Forces. DEWs represent another
naval innovation that when transitioned from the laboratory to battlefield will help our Navy
and Marine Corps Team to sustain its technological advantage and win our nation’s battles.
Towards this end, the DoN will take a measured approach toward DEW S&T and R&D
activities and their transition to acquisition programs based on operational requirements,
technological maturity or readiness, demonstrated performance, ease of systems integration
and affordability.
The DoN will address the defensive challenges posed by diffusion and maturation of
DEWs available to prospective adversaries.
These efforts will guide the development and
fielding of countermeasures, DEW-resistant systems, and effective non-material solutions
across the maritime battlespace domain. While high-power DEWs will be limited to nation
states that choose to pursue them, lower power weapons will become increasingly available
at a relatively low cost to non-state actors.
Finally, the DoN will coordinate with other Services and agencies to ensure policies and
rules of engagement are in place to enable our Sailors and Marines to operationally
employ DEWs effectively.
In addition, we will develop not only the DEWs themselves but
the sensors, communications, and control technologies that will enable DEWs to operate, in
combination with other military capabilities, at their full potential.41
Directed Energy Roadmap and Possible Analysis of Alternatives (AOA)
An August 5, 2013, press report based on an interview with a Navy official states that the Naval
Directed Energy Steering Group “will have its near-term roadmap ready this fall to begin
informing decisions to address drone and small boat swarm threats with directed-energy weapons

41 Department of the Navy, A Directed Energy Vision for U.S. Naval Forces, 2 pp., provided to CRS by Navy Office of
Legislative Affairs, August 20, 2012. Emphasis as in original.
Congressional Research Service
16

Navy Shipboard Lasers for Surface, Air, and Missile Defense

rather than kinetic weapons, with mid- and long-term roadmaps to follow next year.” The report
quoted the Navy official as saying that there have been discussions of conducting an analysis of
alternatives (AOA) on directed-energy capabilities in FY2014.42
Destroyers and LCSs Reportedly Leading Candidate Platforms
An August 20, 2012, press report stated that following the MLD effort, the Navy conducted
studies to examine the ability of various Navy ship classes to accept SSLs. The report quoted
Peter Morrison, ONR’s SSL program manager, as saying that based on these studies, “the DDG
[destroyer] and LCS [Littoral Combat Ship] classes ... provided the best opportunity to match
new capabilities with emerging needs with higher-energy laser weapons capabilities, and the
class’ forecasts for power, cooling, space and weight.” The report stated that the Navy continues
to review the potential for installing SSLs on other types of ships as well.43
LaWS to Be Installed on USS Ponce
On April 8, 2013, the Navy announced that it would install LaWS on the USS Ponce (pronounced
pon-SAY), a converted amphibious ship that is operating in the Persian Gulf as an interim Afloat
Forward Staging Base (AFSB[I]), to conduct evaluation of shipboard lasers in an operational
setting against swarming boats and swarming UAVs.44 LaWS will be installed on the Ponce in the
summer of 2014 and will be evaluated on the ship for a period of 12 months.45
Navy Anticipates Program of Record in FY2018 and IOC in FY2020-FY2021
In March 2014, it was reported that the Navy anticipates moving to a shipboard laser program of
record in “the FY2018 time frame” and achieving an initial operational capability (IOC) with a
shipboard laser in FY2020 or FY2021.46
March 2014 Navy Testimony
At a March 26, 2014, hearing before the Intelligence, Emerging Threats & Capabilities
subcommittee of the House Armed Services Committee on FY2015 DOD Science and technology
Program, Rear Admiral Matthew L. Klunder, Chief of Naval Research, stated:

42 Megan Eckstein, “Directed-Energy Roadmap Due This Fall, Will Begin Guiding Budgets,” Inside the Navy, August
5, 2013.
43 Megan Eckstein, “ONR Planning First Solid-State Laser Weapon Prototypes On DDG, LCS,” Inside the Navy,
August 20, 2012. Ellipse in the quote as in the article.
44 “Navy Leaders Announce Plans for Deploying Cost-Saving Laser Technology,” Navy News Service, April 8, 2013;
Thom Shanker, “Navy Deploying Laser Weapon Prototype Near Iran,” New York Times, April 9, 2013: 4; Mike
McCarthy, “Navy Deploying Laser For Taking Out Drones,” Defense Daily, April 9, 2013; Graham Warwick, “U.S.
Navy Planning Gulf Deployment For Laser Weapon,” Aerospace Daily & Defense Report, April 9, 2013: 6; Megan
Eckstein, “Navy-Built Laser Weapon System Will Begin Demo On Ponce In Early 2014,” Inside the Navy, April 15,
2013. See also Office of Naval Research, “All Systems Go: Navy’s Laser Weapon Ready for Summer Deployment,”
Navy News Service, April 7, 2014.
45 Lara Seligman, “Navy-built LaWS To Begin Demo This Summer, IOC Slated For FY-20-21,” Inside the Navy,
March 24, 2014.
46 Lara Seligman, “Navy-built LaWS To Begin Demo This Summer, IOC Slated For FY-20-21,” Inside the Navy,
March 24, 2014.
Congressional Research Service
17

Navy Shipboard Lasers for Surface, Air, and Missile Defense

An ongoing example of our success is the laser weapons system [LaWS], part of our solid
state laser maturation effort [SSL-TM]. We feel energy weapons, specifically directed energy
weapons, offer the Navy and the Marine Corps game-changing capabilities in speed of light
engagement, deep magazines, multi-mission functionality and affordable solutions. Laser
weapons are very low engagement costs. Right now, we‘re literally under a U.S. dollar per—
per pulsed energy round. Which is critical in our current fiscal environment.
They are capable in defeating adversarial threats, including fast boats, UAVs and other low-
cost, widely-available weapons. Now, our laser weapons system—again, referred to as
LaWS—leverages advances in commercial technology for use in a rugged, robust prototype
weapon capable of identifying, illuminating, tracking and lasing enemy surface and air
threats. The Navy’s installing this LaWS system on board the USS Ponce in the Arabian
Gulf this year; this summer, to be exact.
That harsh and operationally important environment will provide an ideal opportunity to
evaluate long-term system performance. We believe that LaWS has every potential for
extraordinary success in field—terms of fielding an effective, affordable weapon for our
sailors and Marines.47
Later in the hearing, the following exchange occurred:
REPRESENTATIVE NUGENT (continuing): ... Admiral, I'm really interested in—and I’m
interested in all of you as it relates to directed energy. Mr. Langevin and I, I think, are—are
pretty big proponents of directed energy because of what you mentioned in regards to—on
the Ponce, in regards to actually testing, and the ability to test and what it costs to test versus
shooting a missile off at a—a million dollars a copy versus a dollar.
Can you—we see programs in development stage. But then they tend to never make it to
production, never make it to, you know, deployment. Where do we stand as it relates to that
system on the Ponce in regards to the future?
KLUNDER: Yes, sir. Thank you for the question. And I—I'll offer that there’s—it’s really a
conviction my our senior leadership in the Department of the Navy. And—and what I mean
by that is that we—we want those new innovative systems to be in the hands of sailors and
Marines. We want them to tell us did we develop it right, did we develop and it needs to be
tweaked a little bit? Or did we develop and we just didn't do it right? And we'll—we'll bring
it back.
But the point there is, you need to get a sailor or a Marine’s hands on that thing, and tell
them is it gonna be effective in warfighting environment, and it—will—will it be affordable.
So the point I'd like to make, and thank you for your—your—your comments about
innovation, we truly think that’s the way this nation was built and—and is the way we get in
front of our adversaries. We don’t want to run with them. I don't want a sailor or a Marine to
ever go into a fair fight.
I want them to always have the technological advantage so we always win and defend our
nation. What we’ve done this time on the Ponce, I think, is very credible is I don't have a
bunch of (ph)—my scientists and my colleagues, we developed it. But I've got real sailors
right down there at Dahlgren, right now, on the system. And it’s not a singular laptop over in
the corner somewhere. It’s a fully-integrated with our fully-integrated combat information
system on that ship.

47 Transcript of hearing.
Congressional Research Service
18

Navy Shipboard Lasers for Surface, Air, and Missile Defense

So those young men and women on that—detachment of sailors are gonna go out there.
They’re gonna test it. And, indeed, we feel very comfortable because we’ve never missed so
far. And that’s one of the reasons why CNO [the Chief of Naval Operations, Admiral
Jonathan] Greenert said, “Matt, get it out there.” We've never missed. We feel confident,
though, that we'd like to test it in that tough environment and see where it goes.
And to—the follow-on to the last bit of your question, I think regardless of the High Energy
Laser-Joint Technology Office, I can assure you that we’ve got all the resources positioned
in the Navy and Marine Corps to put us in a good place when this test is done. And I'm not
sure if you're familiar, but we also have a solid state laser technology maturation program
that takes it to a much higher power level, and that’s in ’16 [FY2016].
So when we finish this test on Ponce, that demo with real sailors, and we finish up the
prototyping in ‘16 [FY2016], we think we'll be very well positioned for follow-on, long-
term, enduring efforts.
NUGENT: And I just don't want us to—we can be in a testing mode forever.
KLUNDER: Yes, sir.
NUGENT: I mean, I think you might agree with that. And—and I'd like to see us have at
least a timeline as to—as to when we want to have it operational. It goes back to CHAMP.48
Mr. Langevin and I have talked about that. It goes back to programs as it relates to the Army,
and I know there’s some collaboration between the Army and the Navy on those issues. And
from my standpoint, I think that’s great when you can get bright minds across the lines,
across those services, to utilize that same information and—and make us all safer.
So my question back to you, then is, if, after this test on the Ponce, if it meets the
expectations, what would stand in your way of, if it’s successful, in deploying that on other
ships?
KLUNDER: I would say nothing. Right now, we’ve already started the AOA on that
process, that we’re very familiar with the acquisition programs. We’ve already done all the
blueprinting for the different classes of ships. So in many cases, if we are successful we see
this as a possible weapons system for a number of classes of our ships. And I think it’s
important, too, if I could just give my colleagues to my right here a great shout out.
Because we’re doing a test down in your—your great state here in just a few months here to
do some joint Army-Navy testing down at Eglin. And so I think that, again, shows the
collaborative effort we do on directed energy.49
FY2015 Funding Request
The Navy’s proposed FY2015 budget requests $40.5 million for research and development work
on directed energy technologies, including the SSL technologies, in the directed energy portion of

48 CHAMP stands for Counter-Electronics High Power Microwave Advanced Missile Project, another DOD effort.
49 Transcript of hearing. See also Lara Seligman, “ONR Chief: If Ponce Demo A Success, LaWS Will Deploy On
Other Ships,” Inside the Navy, March 31, 2014; John C. Marcario, “Navy’s Laser Weapon System Facing Big Test,”
Seapower (www.seapowermagazine.org), March 26, 2014.
Congressional Research Service
19

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Program Element (PE) 0602114N, Power Projection Applied Research, a line item in the Navy’s
research and development account.50
Additional funding for SSL technologies forms part of the precision strike technology portion of
PE 0603114N, Power Projection Advanced Technology, another line item in the Navy’s research
and development account.51
The Navy’s proposed FY2015 budget also requests $8.7 million for SSLs in Project 9823 (Lasers
for Navy Applications) within PE 0603925N, Directed Energy and Electric Weapon System,
another line item in the Navy’s research and development account.52 The narrative for this request
states in part:
A condition of military urgent need for a laser based weapon solution is documented by
United States Central Command (USCENTCOM) and Chief of Naval Operations (CNO).
The SSL provides a capability to support these gaps with the ability to deter, damage and/or
destroy asymmetric threats including rockets, missiles, fast attack craft, and Unmanned
Aerial Systems (UASs). A SSL Weapon System, at varying power levels, can deter or blind
Intelligence, Surveillance, Reconnaissance (ISR) systems at low powers, as well as, destroy
the platforms (UAS, small boat) that carry them. SSL leverages the Office of Naval Research
(ONR) efforts on the SSL Quick Reaction Capability (QRC) and SSL Technology
Maturation (TM) efforts. SSL will transition this capability from Science and Technology
(S&T) development to a Program of Record (PoR)....
FY 2015 Plans:
Lasers for Navy Applications, Solid State Laser (SSL) Development: Manage/engineer
product development of the Low Power Module (LPM) Counter -Electro Optic Infra Red
(EO/IR) hardware/software/firmware module and associated test and control equipment to
interface with the SSL TM System and other Counter-ISR Systems. At the unclassified level,
this module will provide the capability to dazzle ISR sensors at tactically significant
ranges.53

50 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 1, Research, Development, Test & Evaluation, Navy Budget Activities 1, 2, and 3
, March 2014, pp. 77-79 [pdf
pages 133-135 of 492].
51 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 1, Research, Development, Test & Evaluation, Navy Budget Activities 1, 2, and 3
, March 2014, pp. 299-301
[pdf pages 355-357 of 492].
52 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 2, Research, Development, Test & Evaluation, Navy, Budget Activity 4
, March 2014, pp. 599-600 [pdf pages
661-662 of 770].
53 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 2, Research, Development, Test & Evaluation, Navy, Budget Activity 4
, March 2014, p. 599 [pdf page 661 of
770].
Congressional Research Service
20

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Issues for Congress
Number of Laser Types to Continue Developing
Potential Strategies
One potential issue for Congress is how many of the three laser types discussed in this report—
fiber SSLs, slab SSLs, and FELs—the Navy should continue developing.
Supporters of stopping development of all three types (or of continuing development of one type)
might argue that continuing the development of shipboard lasers (or of more than one type of
laser), while perhaps desirable, would reduce funding for more important Navy program priorities
below critical levels, particularly in a situation of constrained Navy resources. They might argue
that the Navy’s kinetic weapons in coming years will have sufficient (or largely sufficient)
capability for countering the kinds of targets that shipboard lasers could counter.
Supporters of continuing development of two or three types might argue that it would permit
continued competition between laser types and provide a hedge against the failure of one of the
development efforts. DOD in the past, they might argue, has sometimes pursued comparable
programs concurrently to ensure the best outcome for an area of effort deemed important. They
might also argue that the Navy’s kinetic weapons in coming years will be insufficient to counter
certain kinds of targets, or that shipboard lasers would counter them more cost effectively.
Relative Merits of Laser Types
In considering which laser types to continue developing, policy makers may consider the relative
merits of each type. Below are some arguments relating to the relative merits each type. The
discussions below are intended as introductory only; a full comparison of their relative merits
would entail much longer discussions.
Some Arguments Relating to Fiber SSLs
Supporters of LaWS argue that it has a demonstrated ability to counter certain targets of interest
at short (but tactically useful) ranges in a marine environment; that it can be installed on Navy
ships in the near term; that it promises to be less expensive than a slab SSL; that it poses less of a
challenge in terms of thermal management than a slab SSL; that it has less ship impact than
FELs; that it uses an industrial laser technology with high reliability and few alignment optics,
making possible a simplified system engineering solution for a Navy laser system; and that its
power can be scaled up to 100 kW or perhaps more. They argue that the system’s BQ, though not
excellent, is good enough to disable targets of interest at short ranges. They argue that the
system’s light wavelength of 1.064 microns, though not exactly on the atmospheric transmission
“sweet spot” located at 1.045 microns, is good enough in terms of atmospheric transmission to
permit the laser to disable targets of interest at tactically useful ranges, and that development
work is underway on SSLs that would emit light at wavelengths above the threshold (about 1.5
microns) at which laser light becomes much less dangerous to human eyes.
Congressional Research Service
21

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Some skeptics of LaWS, including supporters of the MLD, argue that the LaWS’s BQ limits its
effective range. Other skeptics of LaWS, including supporters of FELs, argue that LaWS’s
operating wavelength limits its effective range, particularly when compared to FELs, whose
wavelengths can be tuned to exactly match atmospheric transmission sweet spots, and that
LaWS’s current wavelength is dangerous to human eyes, whereas an FEL can operate at
wavelengths matching atmospheric sweet spots that are located above 1.5 microns.
Some Arguments Relating to Slab SSLs
Supporters of MLD argue that it has a demonstrated power level of 105 kW (more than three
times that of LaWS); that it has a much better BQ than LaWS, permitting it to counter targets at
greater ranges (thereby providing a larger defended area around the ship, and more time to
counter targets approaching the ship); that it could be ready for installation on ships as soon as, or
not very long after, the LaWS system would be; that a production version could have a
procurement cost comparable to, or even less than, that of a production version of LaWS; that the
challenge slab SSLs pose in terms of thermal management, though perhaps greater than that of
fiber SSLs, can nevertheless be handled; and that slab SSLs can be scaled up to 300 kW or more
while retaining good BQ. The MLD contract, they argue, was competitively awarded, the
competitors for the contract included fiber SSLs, and the contract was awarded instead to a slab
SSL.
Supporters of slab MLDs argue that the difference in complexity between fiber SSLs and slab
SSLs is not as great as some supporters of LaWS contend—that fiber SSLs, for example, have
more free-space optics54 than slab SSLs. Supporters of MLD argue that the industrial
environments in which commercial fiber SSLs have operated are not characterized by shocks or
high humidity—two features that characterize the shipboard operating environment—whereas
MLD was designed from the start with eventual ship operations in mind. Supporters of MLD
argue that it can be maintained easily in the field through the use of sealed line replaceable units
(LRUs).55 MLD supporters argue, as do supporters of LaWS, that the system has less ship impact
than an FEL; that the system’s light wavelength of 1.064 microns, though not exactly on the
atmospheric transmission “sweet spot” located at 1.045 microns, is good enough in terms of
atmospheric transmission to permit the laser to disable targets of interest at tactically useful
ranges, and that development work is underway on SSLs that would emit light at wavelengths
above the threshold (about 1.5 microns) at which laser light becomes much less dangerous to
human eyes.
Skeptics of MLD, including supporters of LaWS, argue that it uses complex optics, making it
more expensive to procure and potentially less reliable and more difficult to maintain than LaWS.
Other skeptics of MLD, including supporters of FELs, argue, as they do regarding LaWS, that
MLD’s operating wavelength limits its effective range, particularly when compared to FELs,
whose wavelengths can be tuned to exactly match atmospheric transmission sweet spots, and that
MLD’s current wavelength is dangerous to human eyes, whereas an FEL can operate at
wavelengths matching atmospheric sweet spots that are located above 1.5 microns.

54 Free space optics are those arranged so that the light travels from one optical element (such as a mirror) to another,
with an air gap (i.e., free space) in between.
55 LRUs are sealed, box-like containers enclosing many of a weapon’s components. LRUs support a modular approach
to maintenance in which personnel repair the weapon by removing a faulty LRU and replacing it with another.
Congressional Research Service
22

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Some Arguments Relating to FELs
Supporters of FELs argue that unlike SSLs, FELs clearly can be scaled up to megawatt power
levels that would be capable of countering a wide range of targets, including supersonic ASCMs
and ballistic missiles, and that unlike SSLs, FELs can be scaled up in power from 10 kW to 1
MW without any increase in the size of the system or need for a beam combiner (a component
that adds to system complexity and cost). Supporters of FELs argue that in contrast to the fixed
wavelength of light emitted by an SSL, the wavelength of light emitted by an FEL can be tuned to
exactly match various atmospheric transmission sweet spots, including those above the threshold
(about 1.5 microns) at which laser light becomes much less dangerous to human eyes. They also
argue that in contrast to SSLs, FELs pose no large thermal management issues because an FEL’s
waste heat is not produced inside the laser mechanism itself.
Skeptics of FELs, including supporters of SSLs, argue that FELs will not be ready for installation
on ships for a significant number of years. They argue that FELs are so large that they cannot be
incorporated into most if not all existing Navy ship designs, limiting the potential applicability of
FELs to the surface fleet for many years, and that incorporating an FEL into a new ship design
could make the ship considerably larger, adding to the ship’s construction cost. They also argue
that the need for isolating the FEL system from vibration and shock and the possible need for
using cryogenic equipment adds to an FEL’s cost and complexity.
Implications for Ship Design and Acquisition
Another potential issue for Congress are the possible implications that shipboard lasers might
have for the design and acquisition of Navy ships, including the Flight III DDG-51 destroyer that
the Navy wants to begin procuring in FY2016.56 The ability of existing Navy ship designs to
support lasers, particularly in terms of having sufficient electrical power and cooling capacity, can
be summarized as follows:
• The Navy has concluded that its Aegis cruisers and destroyers (i.e., CG-47 and
DDG-51 class ships), as well as San Antonio (LPD-17) class amphibious ships,
would have enough available electrical power under battle conditions (i.e., when
many other systems are also drawing electrical power) to support a LaWS
system. An August 2010 press report stated: “Today’s warships have enough
power to support a 100-kilowatt laser, said [Capt. David Kiel, program manager
for directed energy and electric weapons at Naval Sea Systems Command]. Any
surface combatant large enough to accommodate the close-in weapon system
[CIWS] could also carry the fiber laser, he added.”57
• Some Navy ships might be able to support, under battle conditions, an SSL with
a power somewhat above 100 kW.
• No existing Navy surface combatant designs have enough electrical power or
cooling capacity to support an SSL with a power level well above 100 kW.

56 For more on the Flight III DDG-51, see CRS Report RL32109, Navy DDG-51 and DDG-1000 Destroyer Programs:
Background and Issues for Congress
, by Ronald O'Rourke.
57 Grace V. Jean, “Navy Aiming for Laser Weapons at Sea,” National Defense, August 2010, accessed online at
http://www.nationaldefensemagazine.org/archive/2010/August/Pages/NavyAimingforLaserWeaponsatSea.aspx.
Congressional Research Service
23

Navy Shipboard Lasers for Surface, Air, and Missile Defense

• Because of its probable size, an FEL could not be backfitted onto existing
cruisers or destroyers. Aircraft carriers and “large-deck” amphibious assault ships
(i.e., LHA/LHD-type amphibious ships) might have enough room to
accommodate an FEL, but existing carriers and amphibious assault ships might
not have enough electrical power to support a megawatt-class FEL. In addition,
because of thermal blooming and the status of carriers and amphibious assault
ships as potential high-value targets, it might make more operational sense to
install megawatt-class FELs on ships other than carriers or amphibious assault
ships.58
The above points suggest that the Navy in coming years could face significant ship-design
constraints in its ability to install shipboard lasers, particularly SSLs well above 100 kW in
power, and FELs in general. These constraints are a product, in part, of the Navy’s termination of
the CG(X) cruiser program, because the CG(X) could have been designed to support SSLs well
above 100 kW in power and/or a megawatt-class FEL.59 Following the termination of the CG(X)
program, the Navy has no announced plans to acquire a surface combatant clearly capable of
supporting an SSL well above 100 kW in power, or an FEL.
Ship-design options for expanding the Navy’s ability to install lasers on its surface ships in
coming years include the following:
• design the new Flight III version of the DDG-51 destroyer, which the Navy
wants to start procuring in FY2016, with enough space, electrical power, and
cooling capacity to support an SSL with a power level of 200 kW or 300 kW or
more—something that could require lengthening the DDG-51 hull, so as to
provide room for laser equipment and additional electrical generating and cooling
equipment;
• design and procure a new destroyer as a follow-on or substitute for the Flight III
DDG-51 that can support an SSL with a power level of 200 kW or 300 kW or
more, and/or a megawatt-class FEL;60
• modify the designs of amphibious assault ships to be procured in coming years,
so that they can support SSLs with power levels of 200 kW or 300 kW or more,
and/or megawatt-class FELs; and
• modify the design of the Navy’s new Ford (CVN-78) class aircraft carriers, if
necessary, so that they can support SSLs with power levels of 200 kW or 300 kW
or more, and/or megawatt-class FELs.61

58 The issue of thermal blooming in “down-the-throat” engagements is of particular concern for a megawatt-class laser.
Since carriers and amphibious assault ships are potential high-value targets for an attacker, it might make more
operational sense to install megawatt-class FELs on ships other than carriers or amphibious assault ships, so that those
other ships could use their FELs to counter targets that are flying a crossing path toward a carrier or amphibious assault
ship.
59 For more on the CG(X) program, see CRS Report RL34179, Navy CG(X) Cruiser Program: Background for
Congress
, by Ronald O'Rourke.
60 For more on the option of a new-design destroyer, see CRS Report RL32109, Navy DDG-51 and DDG-1000
Destroyer Programs: Background and Issues for Congress
, by Ronald O'Rourke.
61 For more on the CVN-78 program, see CRS Report RS20643, Navy Ford (CVN-78) Class Aircraft Carrier Program:
Background and Issues for Congress
, by Ronald O'Rourke.
Congressional Research Service
24

Navy Shipboard Lasers for Surface, Air, and Missile Defense

An April 29, 2013, press report states:
Now that the U.S. Navy is pushing even harder to equip its vessels with lasers, the service is
focusing on reliable, high-voltage shipboard power to feed those weapons. Indeed, Navy
officials say, meeting that need is becoming a matter of national security.
“The work being done in this area is vital,” said Thomas Killion, who heads the Office of
Naval Research’s (ONR’s) Office of Transition, during this month’s Electric Ship
Technologies Symposium outside Washington. “As the upcoming deployment of a shipboard
laser weapon reminds us, we need power generation and power management systems with
greater-than-ever capabilities, but from devices that are smaller than ever.”
Now, navy scientists are looking for ways to better power those shipboard weapons. ONR-
supported efforts are focused on cutting-edge technologies that include silicon carbide (SiC)-
based transistors, transformers and power converters. “SiC is important because it improves
power quality and reduces size and weight of components by as much as 90 percent,” says
Sharon Beerman-Curtin, ONR’s power and energy science and technology lead. “This is a
critical technology enabler for future Navy combatant ships that require massive amounts of
highly controlled electricity to power advanced sensors, propulsion and weapons such as
lasers and the electromagnetic railgun.”62
Options for Congress
Options for Congress regarding potential shipboard lasers include, among other things, the
following:
• approve, reject, or modify the Navy’s funding requests for development of
potential shipboard lasers;
• request additional information from the Navy and DOD about potential shipboard
lasers, perhaps by holding one or more hearings on the issue, or by requiring the
Navy to submit one or more reports to Congress on the topic;
• encourage or direct the Navy or some other DOD organization to perform an
analysis of alternatives (AOA) comparing the cost-effectiveness of lasers and
traditional kinetic weapons (such as guns and missiles) for countering surface,
air, and missile targets;
• review and comment on any roadmap for shipboard lasers that the Navy adopts;
• encourage or direct the Navy to adopt a program of record for procuring a
production version of a shipboard laser;
• in the absence of a Navy program of record, direct the Navy to develop and
install lasers with certain capabilities on a certain number of Navy surface ships
by a certain date;63

62 Michael Fabey, “U.S. Navy Beefing Up Shipboard Power For Laser Weapon Needs,” Aerospace Daily & Defense
Report
, April 29, 2013: 4.
63 This option could take the form of a provision broadly similar to Section 220 of the FY2001 defense authorization
act (H.R. 4205/P.L. 106-398 of October 30, 2000), which set goals for the deployment of unmanned combat aircraft
and unmanned combat vehicles. For the text of Section 220, see Appendix K.
Congressional Research Service
25

Navy Shipboard Lasers for Surface, Air, and Missile Defense

• encourage or direct the Navy to design the Flight III version of the DDG-51
destroyer so that it can support an SSL with a power level of 200 kW or 300 kW
or more;
• encourage or direct the Navy to design and procure a new destroyer as a follow-
on or substitute for the Flight III DDG-51 that can support an SSL with a power
level of 200 kW or 300 kW or more, and/or a megawatt-class FEL;
• encourage or direct the Navy to modify the designs of amphibious assault ships
to be procured in coming years, so that they can support SSLs with power levels
of 200 kW or 300 kW or more, and/or megawatt-class FELs; and
• encourage or direct the Navy to modify the design of the Navy’s new Ford
(CVN-78) class aircraft carriers, if necessary, so that they can support SSLs with
power levels of 200 kW or 300 kW or more, and/or megawatt-class FELs.
Legislative Activity for FY2015
FY2015 Funding Request
The Navy’s proposed FY2015 budget requests $40.5 million for research and development work
on directed energy technologies, including the SSL technologies, in the directed energy portion of
Program Element (PE) 0602114N, Power Projection Applied Research, a line item in the Navy’s
research and development account.64
Additional funding for SSL technologies forms part of the precision strike technology portion of
PE 0603114N, Power Projection Advanced Technology, another line item in the Navy’s research
and development account.65
The Navy’s proposed FY2015 budget also requests $8.7 million for SSLs in Project 9823 (Lasers
for Navy Applications) within PE 0603925N, Directed Energy and Electric Weapon System,
another line item in the Navy’s research and development account.66

64 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 1, Research, Development, Test & Evaluation, Navy Budget Activities 1, 2, and 3
, March 2014, pp. 77-79 [pdf
pages 133-135 of 492].
65 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 1, Research, Development, Test & Evaluation, Navy Budget Activities 1, 2, and 3
, March 2014, pp. 299-301
[pdf pages 355-357 of 492].
66 Department of Defense, Department of Defense Fiscal Year (FY) 2015 Budget Estimates, Navy Justification Book
Volume 2, Research, Development, Test & Evaluation, Navy, Budget Activity 4
, March 2014, pp. 599-600 [pdf pages
661-662 of 770].
Congressional Research Service
26

Navy Shipboard Lasers for Surface, Air, and Missile Defense

FY2015 National Defense Authorization Act (H.R. 4435/S. 2410)
House
The House Armed Services Committee, in its report (H.Rept. 113-446 of May 13, 2014) on H.R.
4435, recommends approving the Navy’s FY2015 funding requests for Program Elements (PEs)
0602114N, 0603114N, and 0603925N in the Navy’s research and development account. (Page
425, line 004, page 426, line 015, and page 428, line 073, respectively.)
H.Rept. 113-446 states:
Briefing on the Navy Laser Weapon System
The committee directs the Secretary of the Navy to brief the House Committee on Armed
Services by March 2, 2015, on the performance of the Navy Laser Weapon System (LaWS)
after deployment aboard the USS Ponce. The committee requests the following development
groups be represented at this brief: Directed Energy and Electric Weapons, Office of Naval
Research; Naval Surface Warfare Center; Ship Command of the USS Ponce while testing
LaWS; the actual operators of LaWS aboard the USS Ponce; and any other briefers the
Secretary deems appropriate. This brief shall include: the preparation of the weapon system
for deployment at sea, structural and power accommodations on the USS Ponce, any special
training for the officers and crew, performance of LaWS from the perspective of the
operators, recommendations for future pre-deployment training, and an assessment on the
feasibility of near-term deployment of a directed energy ship defense system across the
Navy. (Page 59)
The report also states:
Navy deployment of the laser weapon system
The committee commends the Navy on its recent efforts to operationally deploy a directed
energy laser weapon system. The Department of Defense has invested significant resources
in directed energy weapon system research and development (R&D) with limited success at
fielding an operational system. The committee recognizes the challenges posed by these
R&D efforts, and understands the complexity of the issues that still need to be addressed in
order to transition directed energy technology to viable weapon systems. Recent
demonstrations within the directed energy community, such as the Counter-electronics High
Power Advanced Missile Project (CHAMP) by the Air Force and the High Energy Laser
Mobile Demonstrator (HEL-MD) by the Army, have shown significant progress toward
addressing these issues. The committee notes that the deployment of the Laser Weapon
System (LaWS) by the Navy onboard the USS Ponce, which will occur late in 2014, was the
first deployment of a high energy laser system on a U.S. vessel in a realistic maritime
environment. The committee congratulates the Navy on the achievement of this major
milestone and looks forward to seeing the results of this deployment and how it will inform
future decisions related to directed energy weapons. (Pages 60-61)
The report also states:
Leveraging commercial technology for directed energy
The committee is aware of recent advances amongst the military services to field directed
energy weapons, including the upcoming deployment of the Laser Weapon System onboard
the USS Ponce by the Navy, as well as the recent testing of the High Energy Laser Mobile
Congressional Research Service
27

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Demonstrator by the Army at White Sands Missile Range. The committee congratulates the
services on this progress. The committee is also aware that the laser systems used in both of
these cases are commercial off-the-shelf industrial lasers which were purchased and modified
by each service to be suitable for their respective military application. In many cases, these
lasers do not provide enough power to achieve mission objectives, and there are several
research and development efforts underway to develop laser systems which will be capable
of fulfilling all mission requirements. However, the committee recognizes that there are
many critical system engineering and integration problems that may be solved using these
lower power systems in the interim, which will reduce both the time and cost associated with
the deployment of directed energy systems. Therefore the committee encourages the
Department of Defense agencies which are working to develop directed energy weapons to
continue to examine the industrial base for technologies which may be utilized for these
systems, and to leverage such technologies whenever possible. (Page 89)
Senate
The Senate Armed Services Committee, in its report (S.Rept. 113-176 of June 2, 2014) on S.
2410, recommends approving the Navy’s FY2015 funding requests for Program Elements (PEs)
0602114N, 0603114N, and 0603925N in the Navy’s research and development account. (Page
355, line 4; page 355, line 15; and page 358, line 73, respectively.)
FY2015 DOD Appropriations Act (H.R. 4870)
House
The House Appropriations Committee, in its report (H.Rept. 113-473 of June 13, 2014) on H.R.
4870, recommends approving the Navy’s FY2015 funding requests for Program Elements (PEs)
0602114N and 0603114N (page 227, lines 4 and 15, respectively). The report recommends
reducing by $6.0 million the Navy’s FY2015 funding request for PE 0603295N, but the
recommended reduction is for the Navy’s railgun program, not for lasers (page 229, line 73, and
page 236, line 73).


Congressional Research Service
28

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix A. Laser Power Levels Required to
Counter Targets

Table A-1 shows two Navy perspectives, a Defense Science Board (DSB) task force perspective,
and two industry perspectives on approximate laser power levels needed to affect various
categories of targets. As can be seen in the table, these perspectives differ somewhat regarding the
power levels needed to counter certain targets, perhaps because of differing assumptions about
beam quality (BQ) and other factors.
Table A-1. Approximate Laser Power Levels Needed to Affect Certain Targets
Multiple perspectives that may reflect varying assumptions about BQ and other factors
Beam power measured in kilowatts (kW) or megawatts (MW)
Tens of
~100
Source
~10 kW
kW
kW
Hundreds of kW
MW
UAVs

One Navy

Small boats

briefing (2010)



Missiles (starting at 500 kW)

Short-range operations
Extended-range operations
Operations against
against UAVs, RAM,
against UAVs, RAM,
supersonic, highly
Another Navy
MANPADS (50 kW-
MANPADS, ASCMs flying a
maneuverable ASCMs,
briefing (2010)
100kW; low BQ)
crossing path (>100 kW,
transonic air-to-surface
BQ of ~2)
missiles, and ballistic
missiles (>1 MW)
Industry

UAVs and
RAM (100+ kW), subsonic ASCMs (300
Supersonic ASCMs and
briefing (2010)
small boats
kW), manned aircraft (500 kW)
ballistic missiles
(50 kW)
Defense

Surface

Ground-based air and
“Battle group defense” at
Science Board
threats at
missile defense, and
5-20 km (1-3 MW)
(DSB) report
1-2 km
countering rockets,
(2007)
artillery, and mortars, at 5-
10 kma
Soft UAVs
Aircraft
Soft
Aircraft and cruise missiles

at short
and cruise
UAVs at
at long range, and artillery
Northrop
range
missiles at
long
rockets (lower hundreds of
Grumman
short
range
kW)
research paper
range
Artillery shells and terminal
(2005)
defense against very short
range ballistic missiles
(higher 100s of kW)
Source: One Navy briefing: Briefing slide entitled “HEL [High-Energy Laser] Missions,” in briefing entitled
“Directed Energy Warfare Office (DEWO) Overview,” July 23, 2010. Another Navy briefing: Briefing slide
entitled “Surface Navy Laser Vision,” in briefing entitled “Navy Directed Energy Efforts – Ship Based Laser
Weapon System,” July 23, 2010. Industry briefing: Briefing to CRS by an industry firm in the summer of 2010;
data shown in table used here with the firm’s permission. DSB report: [Report of] Defense Science Board Task
Force on Directed Energy Weapons
, December 2007, Table 2 (page 12). Northrop Grumman research paper:
Richard J. Dunn, III, Operational Implications of Laser Weapons, Northrop Grumman (Analysis Center Papers),
September 2005 (available online at http://www.northropgrumman.com/analysis-center/paper/assets/
Operational_Implications_of_La.pdf), visual inspection of Figure 1 (page 7).
Congressional Research Service
29

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Notes: kW is kilowatts; MW is megawatts; km is kilometer; RAM is rockets, artillery, mortars; MANPADS is
man-portable air defense system (i.e., shoulder-fired surface-to-air missiles).
a. Note that this statement refers to ground-based operations. It is not clear how this statement might change
for shipboard operations, where atmospheric absorption due to water vapor can be an increased concern.
Congressional Research Service
30

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix B. Navy Organizations Involved in
Developing Lasers

Principal Navy organizations involved in developing lasers for potential shipboard use include
• the Office of Naval Research (ONR);
• the Naval Research Laboratory (NRL);
• the Directed Energy and Electric Weapon Systems (DE&EWS) Program Office
(PMS-405);67
• the Naval Surface Warfare Center (NSWC) Dahlgren Division (NSWCDD),
located at Dahlgren, VA; and
• the Directed Energy Warfare Office (DEWO), which the Navy established in
August 2009 to serve as an NSWCDD center of excellence.
Additional Navy organizations involved in developing lasers for potential shipboard use include
the CIWS program office (PEO IWS 3B, meaning Program Executive Officer, Integrated Warfare
Systems, office code 3B); NSWC Crane Division at Crane, IN; NSWC Port Hueneme at Port
Hueneme, CA; the Naval Air Weapon Stations at China Lake and Point Mugu, CA, as well as the
Naval Air Station Patuxent River, MD, all of which are part of the Naval Air Systems Command
(NAVIAR); and the Space and Naval Warfare Systems (SPARWAR) Center Pacific, located at
San Diego.
Additional DOD organizations outside the Navy are also involved in developing lasers for
potential shipboard use.

67 PMS-405 means Project Manager, Shipbuilding, office code 405.
Congressional Research Service
31

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix C. Additional Information on Laser
Weapon System (LaWS)

A fiber SSL first uses high power semiconductor laser diodes to convert electricity into light. The
light then passes through one or more glass optic fibers that contain a small amount of a
deliberately introduced impurity, or “dopant” material, usually ytterbium (Yb). The interaction of
the light with the dopant both changes the light’s wavelength (color) and concentrates the light
into a narrow laser beam that travels down the fiber until it exits the other end. Special optics
combine the output of multiple fibers into one powerful beam. The fibers are referred to as the
gain medium, and the laser is called a solid state laser because the gain medium is a solid rather
than a liquid (such as in dye lasers) or a gas (as in gas lasers). Over the last decade, dramatic
improvements in diodes and fiber materials have enabled a roughly 100-fold increase in the
maximum power of an individual fiber SSL, from about 100 watts to about 10 kW.
The Navy’s approach to developing LaWS was to maximize reliance on existing technology and
components so as to minimize development and procurement costs. The LaWS prototype
incoherently combines light beams from six fiber SSLs—commercial, off-the-shelf (COTS)
welding lasers—each with a power of 5.5 kW, to create a laser with a total power of 33 kW68 and
a BQ of 17. The light from the six lasers is said to be incoherently combined because the
individual beams are not merged into a true single beam (i.e., the individual beams are not
brought in phase with each other). Although the beams are quite close to one another, they remain
separate and out of phase with each other, and are steered and focused by the beam director so
that they converge into a single spot when they reach the intended target. Coherently combining
the six beams into a true single beam (i.e., one in which the six beams are “phase locked”) would
require a system with more-complex internal optics and electronic control systems.
LaWS, like many other fiber SSLs, emits light with a wavelength of 1.064 microns, which is
close to, but not exactly at, an atmospheric transmission “sweet spot” at 1.045 microns.
LaWS is about 25% efficient, meaning that about 400 kW of ship’s power would be needed to
operate a future version of LaWS producing 100 kW of laser light. The remaining 300 kW of
electrical energy would be converted into waste thermal energy (heat) that needs to be removed
from the system using the ship’s cooling capacity.
The conceptual breakthrough underpinning LaWS was made by scientists at the Pennsylvania
State Electronic-Optic Center in 2004 and 2005 during some simple experiments, and by
scientists at the Naval Research Laboratory (NRL) in 2006, in detailed analysis and subsequent
experiments. Both groups showed that coherently combining light beams was not necessary to
create a militarily useful laser from commercial fiber SSLs—that this could be done through the
technically simpler approach of incoherently combining their beams.

68 A June 6, 2010, press report states that “The system uses six commercial off-the-shelf five-and-a-half kilowatt
welding lasers.... ” (Dan Taylor, “Navy Testing Developmental Laser Against Small Surface Vessels,” Inside the Navy,
June 7, 2010.) Another source puts the total power of LaWS at 32 kW. (Larry Greenemeier, “U.S. Navy Laser Weapon
Shoots Down Drones in Test, ScientificAmerican.com, July 19, 2010, accessed online at
http://www.scientificamerican.com/article.cfm?id=laser-downs-uavs.)
Congressional Research Service
32

Navy Shipboard Lasers for Surface, Air, and Missile Defense

DEWO is the lead system integrator (LSI) and technical direction agent for LaWS. Raytheon, the
maker of CIWS, is the prime support contractor for the CIWS integration effort.69
A June 1, 2011, Navy information paper states:
1. The following efforts (funded under Fiscal Year [FY] 2010 Congressional Add) are
underway to support the conduct of Trident Warrior (TW) 11 in the June 2011 timeframe:
• Predictive Avoidance – continuing engineering, analysis, software development, and
integration of a Predictive Avoidance Safety System (PASS) into the Prototype Laser
Weapon System (LaWS)
• Stabilization – continuing engineering, analysis, software development, and integration
of Fast Steering Mirrors (FSM) as part of the Beam Control/Tracking subsystem of
LaWS
• LaWS KINETO Tracking Mount (KTM) Enclosure – material procurement and
enclosure fabrication that will fit within the space constraints of the mechanized landing
craft (LCM-8) as a test platform
• TW 11 test planning and documentation development.
Trident Warrior info can be found at:
http://www.public.navy.mil/usff/tridentwarrior/Pages/default.aspx
2. The following efforts were accomplished or are underway in support of the PEO IWS
Laser Close In Weapon System (CIWS) Draft Weapon Specification development effort:
• Provided: Threat Vulnerability information for both in band and out of band laser
engagements; LaWS test results from White Sands Missile Range and St. Nicholas
Island; draft Design Reference Missions (DRMs); draft generic Concept of Operations
(CONOPs); system level requirements for multi beam aperture system; draft space,
weight, air, power requirements; Laser Trade Study Briefings.
• In Process: Attending System Engineering Working Group (SEWG) meetings in support
of Draft Weapon Specification development; providing technical reviews of Draft
Weapon Specification developments.
3. The current Technology Readiness Level (TRL) of the Prototype LaWS is approaching
6, based on a system prototype demonstration in a relevant (maritime) environment.70
Figure C-1 shows a picture of the LaWS prototype; Figure C-2 shows a rendering of LaWS
when installed as an addition to a CIWS mount. In Figure C-2, the red-colored tube hanging off
the left side of the CIWS mount is the LaWS beam director, and the white device bolted to the
right side of the CIWS radome is another LaWS component.

69 Other firms involved in the LaWS effort include IPG Photonics (the maker of the fiber SSLs), L-3 Communications,
and Boeing. The LaWS effort also involves the Pennsylvania State University Electro-Optics Center and the Johns
Hopkins University Applied Physics Laboratory.
70 Source: Navy information paper dated June 6, 2011, provided by the Navy to CRS and CBO on June 14, 2011.
Congressional Research Service
33


Navy Shipboard Lasers for Surface, Air, and Missile Defense

Figure C-1. Photograph of LaWS Prototype

Source: Photograph provided by Navy Office of Legislative Affairs, November 3, 2010.
Congressional Research Service
34


Navy Shipboard Lasers for Surface, Air, and Missile Defense

Figure C-2. Rendering of LaWS Integrated on CIWS Mount

Source: Rendering provided by Navy Office of Legislative Affairs, November 3, 2010. In this rendering, the red-
colored tube hanging off the left side of the CIWS mount is the LaWS beam director, and the white device
bolted to the right side of the CIWS radome is another LaWS component.
Congressional Research Service
35

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix D. Additional Information on Tactical
Laser System (TLS)

A June 10, 2011, Navy information paper states:
The MK 38 TLS concept is based on a commercial off-the-shelf (COTS) Solid State Laser
(SSL) with a simple Beam Director (BD) integrated with the MK 38 Mod 2 Machine Gun
System (MGS). Other high energy SSL typically combine several individual beams in order
to achieve a higher power output. The TLS is a single phase laser, meaning it does not utilize
a combination of several lasers. This does reduce the total power output of the system, but
allows for a far greater Beam Quality (BQ). The current BQ is 2.1, but modifications are
being made to improve this to 1.5. Beam Quality, along with power output, is a key
parameter to determining a laser’s effectiveness against targets. With the current BQ and
power output, the TLS should be capable of defeating some small boat targets at ranges of up
to 2 km, given optimal weather and sea conditions. A future demonstration of the laser
system’s effectiveness is currently planned in March 2012.
The BD is a simple design with relatively few moving parts. Independent drives enable the
TLS to make azimuth corrections faster and point beyond the elevation limits of the MK 38
Mod 2 MGS. The current integration work for the TLS is to have the MK 38 Mod 2 MGS
Electro-Optical Sight (EOS) hand track over to the TLS. Track handoff from the EOS to the
TLS will be tested in an event scheduled for 29 June 2011 at Eglin Air Force Base.
The TLS is about 30% efficient, meaning 34 kW of power is needed to operate the 10 kW
laser. The remaining 24 kW are converted into thermal energy that must be removed from
the system. Currently, the TLS will utilize its own power distribution and cooling systems.
The power requirement from a ship would be approximately 75 kW, 440 VAC 60 Hz 3
Phase power to run the laser, power management, and currently installed/designed thermal
management systems. Additional engineering development would be required for actual
shipboard use.
Technical risks identified for the TLS demonstration [include] MGS integration, laser Beam
Quality and Beam Director tracking. Accurate target range data is critical to the effectiveness
of the TLS. The BD does not include a Laser Range Finder (LRF), and the MK 38 EOS is
expected to provide this data. The interface of the EOS and TLS will be tested in June at
Eglin as mentioned above. A failure to improve BQ or demonstrate stable tracking for the
BD, will impact system effectiveness resulting in reduced range and higher laser dwell times.
IPG is the COTS laser manufacturer. Boeing is the BD designer and Laser Weapons Module
lead. The MK 38 system integrator is BAE Systems.71
Figure D-1 shows a rendering of TLS when installed as an addition to the Mk 38 machine gun
system.

71 Navy information paper dated June 10, 2011, provided by the Navy to CRS and CBO June 22, 2011.
Congressional Research Service
36


Navy Shipboard Lasers for Surface, Air, and Missile Defense

Figure D-1. Rendering of TLS Integrated on Mk 38 Machine Gun Mount

Source: BAE news release dated April 7, 2011, entitled “BAE Systems Selected to Demonstrate Tactical Laser
System for the U.S. Navy,” accessed online July 5, 2011, at http://www.baesystems.com/Newsroom/
NewsReleases/autoGen_1113718157.html.
Congressional Research Service
37

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix E. Additional Information on Maritime
Laser Demonstration (MLD)

Slab SSLs are similar to fiber SSLs, except that the synthetic crystalline material used as the gain
medium is formed into plate-like slabs rather than flexible fibers. Slab SSLs are being developed
not just by the Navy, but by other U.S. military services, permitting the Navy to leverage
development work funded by other parts of DOD.
MLD coherently combines beams from multiple slab SSLs, each with a power of 15 kW, to create
a higher-power beam with a good BQ. Each 15 kW laser is housed in a Line Replaceable Unit
(LRU) measuring about 1 foot by 2 feet by 3.5 feet. MLD might be installed on its own mount
rather than as an addition to a ship’s existing CIWS mount.
MLD, like LaWS, emits light with a wavelength of 1.064 microns, which is close to, but not
exactly at, an atmospheric transmission “sweet spot” at 1.045 microns.
Slab SSLs are currently about 20% to 25% efficient, meaning that about 400 kW to 500 kW of a
ship’s power would be needed to operate a system producing 100 kW of laser light. The
remaining 300 kW to 400 kW of electrical energy would be converted into waste thermal energy
that needs to be removed from the system using the ship’s cooling capacity. Future slab SSLs
might have efficiencies of about 30%.
In March 2009, Northrop demonstrated a version of MLD that coherently combined seven slab
SSLs, each with a power of about 15 kW, to create a beam with a power of about 105 kW and a
BQ of less than 3.72
Scaling up a slab laser to a total power of 300 kW and a BQ of 2 is not considered to require any
technological breakthroughs. A slab laser with a total power of 300 kW might require a below-
deck space measuring roughly 4.5 feet by 8 feet by 12 feet. Supporters of slab SSLs such as MLD
believe they could eventually be scaled up further, to perhaps 600 kW. Slab SSLs are not
generally viewed as easily scalable to megawatt power levels.
MLD is a commercially integrated weapon system with Northrop and L3-Brashears as the
principal contractors. The government test team includes NSWC Dahlgren (VA), NSWC Port
Hueneme (CA), and NAWC China Lake (CA). Although Northrop is the primary contractor for
MLD, several other firms, such as Raytheon and Textron, are involved in efforts to develop slab
SSLs for potential use by U.S. military services.
An April 8, 2011, ONR news release stated:
Marking a milestone for the Navy, the Office of Naval Research and its industry partner on
April 6 successfully tested a solid-state, high-energy laser (HEL) from a surface ship, which
disabled a small target vessel.

72 See Northrop Grumman press release dated March 18, 2009, and entitled “Northrop Grumman Scales New Heights
in Electric Laser Power, Achieves 100 Kilowatts From a Solid-State Laser,” accessed online at
http://www.irconnect.com/noc/press/pages/news_releases.html?d=161575.
Congressional Research Service
38

Navy Shipboard Lasers for Surface, Air, and Missile Defense

The Navy and Northrop Grumman completed at-sea testing of the Maritime Laser
Demonstrator (MLD), which validated the potential to provide advanced self-defense for
surface ships and personnel by keeping small boat threats at a safe distance.
“The success of this high-energy laser test is a credit to the collaboration, cooperation and
teaming of naval labs at Dahlgren, China Lake, Port Hueneme and Point Mugu, Calif.,” said
Chief of Naval Research Rear Adm. Nevin Carr. “ONR coordinated each of their unique
capabilities into one cohesive effort.”
The latest test occurred near San Nicholas Island, off the coast of Central California in the
Pacific Ocean test range. The laser was mounted onto the deck of the Navy’s self-defense
test ship, former USS Paul Foster (DD 964).
Carr also recognized the Office of the Secretary of Defense’s High Energy Joint Technology
Office and the Army’s Joint High Powered Solid State Laser (JHPSSL) program for their
work. MLD leverages the Army’s JHPSSL effort.
“This is the first time a HEL, at these power levels, has been put on a Navy ship, powered
from that ship and used to defeat a target at-range in a maritime environment,” said Peter
Morrison, program officer for ONR’s MLD.
In just slightly more than two-and-a-half years, the MLD has gone from contract award to
demonstrating a Navy ship defensive capability, he said.
“We are learning a ton from this program—how to integrate and work with directed energy
weapons,” Morrison said. “All test results are extremely valuable regardless of the outcome.”
Additionally, the Navy accomplished several other benchmarks, including integrating MLD
with a ship’s radar and navigation system and firing an electric laser weapon from a moving
platform at-sea in a humid environment. Other tests of solid state lasers for the Navy have
been conducted from land-based positions.
Having access to a HEL weapon will one day provide warfighter with options when
encountering a small-boat threat, Morrison said.
But while April’s MLD test proves the ability to use a scalable laser to thwart small vessels
at range, the technology will not replace traditional weapon systems, Carr added.
“From a science and technology point of view, the marriage of directed energy and kinetic
energy weapon systems opens up a new level of deterrence into scalable options for the
commander. This test provides an important data point as we move toward putting directed
energy on warships. There is still much work to do to make sure it’s done safely and
efficiently,” the admiral said.73
A June 1, 2011, Navy information paper states:
As part of [ONR’s] Survivability and Self Defense focus area, ONR with NAVSEA Program
Executive Office for Integrated Weapons Systems (PEO IWS), the NAVSEA Directed
Energy Program Office (PMS-405), the DoD High Energy Laser Joint Technology Office

73 Geoff S. Fein, “MLD Test Moves Navy a Step Closer to Lasers for Ship Self-Defense,” April 8, 2011 (Office of
Naval Research news release, accessed online at http://www.onr.navy.mil/en/Media-Center/Press-Releases/2011/
Maritime-Laser-MLD-Test.aspx).
Congressional Research Service
39

Navy Shipboard Lasers for Surface, Air, and Missile Defense

(HEL JTO) and the US Army Space and Missile Development Command (USA/SMDC),
contracted with Northrop Grumman to design, develop, integrate, install and test the
Maritime Laser Demonstration (MLD) from 2009 until early 2011.
The MLD program’s main objective was to demonstrate a ship based laser “proof-of-
concept” weapons system to defend against small boat attacks, using commercially available
laser and beam director components. The demonstrator showed the system design could be
installed and function on existing Navy DDG, CG, LSD, LPD, LHA, LHD, and/or FFG
ships; using the ship’s power and fire control capabilities, and use advanced solid state laser
slab directed energy technologies similar to those used in industrial applications. The
successful testing and temporary integration of the MLD on the USS Paul Foster (US Navy
Spruance Class test ship) and the acquired experience promotes confidence in the ability to
subsequently develop a notional Naval Maritime Laser based Weapon System (NMLWS).
The MLD Program marked a significant new naval capability to deter and inhibit an attack
by small fast attack boats in a maritime environment.
After testing, the MLD system was removed from the USS Paul Foster and returned to
Northrop Grumman facilities in El Segundo, California. The MLD system, as tested,
employed a 15 Kilowatt 1.065 micron wavelength laser developed in the OSD HEL JTO
Joint High Power Solid State Laser (JHPSSL) program, and on loan from the USA/SMDC.
The modified JHPSSL module’s output was directed to the target boat and laser fluence on
the target was controlled by a motion stabilized beam director. Initial tracking of high speed,
remotely operated and maneuverable small boat surface targets was provided by the ship’s
complement of existing radars, and then passively and actively tracked by the beam director
cameras through varying environmental conditions up to World Meteorological Organization
(WMO) sea states of three (3). Active engagement of the target was controlled by test, safety
and fire controllers on the USS Paul Foster, located in the ship’s command center.
Significant data collection and photo coverage was gained during testing. In early April of
2011, the Maritime Laser Demonstration program showed significant capabilities for
defeating small boats through the defeat of structural elements of the small boat.
Additionally, engines on the remotely operated small boat target were later set ablaze by the
laser at distances of over one mile. The MLD program marks the first time a laser weapon
has been test fired from a US Navy ship, and successfully showed the potential power of a
laser weapon system in the maritime environment.
The unclassified and publically released video of the testing of the MLD system may be
viewed at YouTubetm at the URL: http://www.youtube.com/watch?v=awsQs4ct0c4.74
Figure E-1 shows the MLD on a trailer; Figure E-2 shows a schematic of the system; Figure E-
3
shows a rendering of the beam director for the MLD in a notional shipboard installation.

74 Source: Navy information paper dated June 1, 2011, provided by the Navy to CRS and CBO on June 14, 2011.
Congressional Research Service
40




Navy Shipboard Lasers for Surface, Air, and Missile Defense

Figure E-1. Photograph of MLD on Trailer

Source: Photograph provided by Navy, November 29, 2010.
Figure E-2. Schematic of MLD

Source: Illustration provided by Navy, November 11, 2010.
Congressional Research Service
41




Navy Shipboard Lasers for Surface, Air, and Missile Defense

Figure E-3. Rendering of MLD in Notional Shipboard Installation


Source: Photograph provided by Northrop, October 21, 2010.

Congressional Research Service
42

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix F. Additional Information on Free
Electron Laser (FEL)

An FEL uses an electron gun to generate a stream of electrons. The electrons are then sent into a
linear particle accelerator to accelerate them to light speeds. The accelerated electrons are then
sent into a device, known informally as a wiggler, that exposes the electrons to a transverse
magnetic field, which causes the electrons to “wiggle” from side to side and release some of their
energy in the form of light (photons). The photons are then bounced between mirrors and emitted
as a coherent beam of laser light. To increase the efficiency of the system, some of the electrons
are then cycled back to the front of the particle accelerator via an energy recovery loop.75
Unlike an SSL, which emits light with a fixed wavelength determined by the composition of its
gain medium, an FEL’s components can be adjusted to change the wavelength of light that it
emits, so as to match various atmospheric transmission “sweet spots.” The basic architecture of
an FEL offers a clear potential for scaling up to power levels of one or more megawatts. A well-
designed FEL can in theory be increased in power from 10 kW to 1 MW without an increase in
system size, and without need for beam combiners. An FEL emits a beam with a BQ of 1 or close
to 1.
Schematics of notional or developmental shipboard FELs today generally show them as devices
with a length of roughly 100 feet. An FEL’s ultimate shipboard space requirements will depend in
part on how it is integrated into a ship’s design, and whether the FEL uses room-temperature or
superconducting particle-acceleration structures. Using superconducting acceleration structures
can reduce the length of an FEL, and would require the use of cryogenic equipment to bring the
superconducting structures down to the very low temperatures needed to make them
superconducting. Operating an FEL would result in the production of X rays, requiring the system
to be shielded to protect the ship’s crew and other parts of the ship.
FELs that recycle electrons have an efficiency of about 10%, meaning that about 10 MW of ship’s
power would be needed to operate an FEL producing 1 MW of laser light. The remaining 9 MW
of electrical energy is converted into waste thermal energy.
The FEL development effort is led by ONR. The effort also includes several other Navy
organizations and institutions,76 four Department of Energy (DOE) laboratories,77 and several

75 A 2004 media advisory from the Office of Naval research states:
In the FEL, electrons are stripped from their atoms and then whipped up to high energies by a
linear accelerator. From there, they are steered into a wiggler—a device that uses an
electromagnetic field to shake the electrons, forcing them to release some of their energy in the
form of photons. As in a conventional laser, the photons are bounced between two mirrors and then
emitted as a coherent beam of light. However, FEL operators can adjust the wavelength of the
laser’s emitted light by increasing or decreasing the energies of the electrons in the accelerator or
the amount of shaking in the wiggler.
(Office of Naval Research media advisory released July 30, 2004, and entitled “Free-Electron Laser
Reaches 10 Kilowatts,” accessed online at http://www.onr.navy.mil/Media-Center/Press-Releases/
2004/Free-Electron-Laser-10-Kilowatts.aspx.)
76 These include the Naval Postgraduate School in California, the U.S. Naval Academy in Maryland, NRL, NSWC
Carderock in Maryland, the Naval Air Weapons Center (NAWC) China Lake in California, NSWCDD, PMS405, and
the Naval Warfare Systems Center Pacific (SPAWAR) in California.
Congressional Research Service
43

Navy Shipboard Lasers for Surface, Air, and Missile Defense

universities.78 Contractors involved in FEL development have included Boeing (CA), Raytheon
(MA), SAIC (VA), Niowave (MI), and Advanced Energy Systems (NY). Boeing and Raytheon
competed for the contract to design the 100 kW FEL. In September 2010, ONR announced that it
had selected Boeing.79 The award makes Boeing the Navy’s current primary contractor for FEL
development.
A January 20, 2011, news report states:
Scientists at Los Alamos National Lab in Los Alamos, N.M., have achieved a remarkable
breakthrough with the Office of Naval Research’s (ONR) Free Electron Laser (FEL)
program, setting the stage for a preliminary design review scheduled Jan. 20-21 in Virginia.
Researchers demonstrated an injector capable of producing the electrons needed to generate
megawatt-class laser beams for the Navy’s next-generation weapon system Dec. 20, months
ahead of schedule.
“The injector performed as we predicted all along,” said Dr. Dinh Nguyen, senior project
leader for the FEL program at the lab. “But until now, we didn’t have the evidence to support
our models. We were so happy to see our design, fabrication and testing efforts finally come
to fruition. We’re currently working to measure the properties of the continuous electron
beams, and hope to set a world record for the average current of electrons.”
Quentin Saulter, FEL program manager for ONR, said the implications of the FEL’s
progress are monumental.
“This is a major leap forward for the program and for FEL technology throughout the Navy,”
said Saulter. “The fact that the team is nine months ahead of schedule provides us plenty of
time to reach our goals by the end of 2011.”80
A June 1, 2011, Navy information paper states:
In September 2010, Boeing was selected as the lead systems integrator for the critical design
phase of the FEL INP to design, develop, integrate and test a 100kw Free Electron Laser
demonstration prototype that will be used to study scaling to megawatt level output powers.
Boeing successfully completed the Preliminary Design Review in January 2011 and is
working on the critical design of the 100kW demonstration prototype.
The Navy’s goal is to build a megawatt-class free electron laser that due to its flexibility in
operating at multiple wavelengths has more capability than any other HEL weapon system to
operate in any maritime environment in the world. Its all electric nature and multimission

(...continued)
77 These are the Thomas Jefferson National Laboratory in Virginia, the Los Alamos National Laboratory in New
Mexico, the Brookhaven National Laboratory in New York, and the Argonne National Laboratory in Illinois.
78 These include the MIT Lincoln Laboratory in Massachusetts, Vanderbuilt University in Tennessee, Colorado State
University, the University of California, the University of Wisconsin, Stanford University in California, Yale
University in Connecticut, the University of Texas, and the University of Maryland.
79 See Department of Defense contract announcement No. 804-10, dated September 7, 2010, accessed online at
http://www.defense.gov/contracts/contract.aspx?contractid=4361. See also Geoff Fein, “ONR Awards Boeing $23
Million To Finish Free Electron Laser Design,” Defense Daily, September 17, 2010: 3-4.
80 Rob Anastasio, “Office of Naval Research Achieves Milestone in Free Electron Laser Program,” Navy News Service,
January 20, 2011.
Congressional Research Service
44





Navy Shipboard Lasers for Surface, Air, and Missile Defense

capability could reduce the cost and logistics burden for the Navy. Presently the FEL
program is the only peer-reviewed electric laser megawatt class program in DoD.81
A March 21, 2012, press report stated that the FEL project was undergoing critical design review
(CDR) that week.82 A March 26, 2012, press report stated that “Boeing made good progress
maturing the megawatt free electron laser, as shown during its critical design review.... ” The
report stated: “[Roger] McGinnis, [program executive for INPs at ONR’s Naval Air Warfare and
Weapons Department], said that the optics was likely the most challenging part but added that
Boeing’s optics system looked very good during the CDR.”83
Figure F-1 shows part of an FEL facility at the Thomas Jefferson National Laboratory (Jefferson
Lab) in Virginia. Figure F-2 shows a simplified diagram of how an FEL works. Figure F-3
shows a Jefferson Lab schematic of an FEL equipped with two “wigglers”—one for producing
infrared (IR) laser light, and one for producing ultraviolet (UV) laser light. The FEL being
developed by the Navy for shipboard use would likely produce only infrared light.
Figure F-1. Photograph of an FEL Facility

Source: Jefferson Lab news release of July 30, 2004, entitled “FEL Achieves 10 Kilowatts,” accessed November
16, 2010 at http://www.jlab.org/news/releases/2004/0410kw.html. The news release says that the release is “As
released by the Office of Naval Research with images and captions from Jefferson Lab.” The caption to the photo
in the news release states: “The Free-Electron Laser vault at Jefferson Lab showing the superconducting

81 Source: Navy information paper dated June 1, 2011, provided by the Navy to CRS and CBO on June 14, 2011.
82 Mike McCarthy, “Navy’s Free Electron Laser Undergoing Design Review,” Defense Daily, March 21, 2012: 7.
83 Megan Eckstein, “FEL Looks Good At CDR, But Project Halted In Favor of SSL Development,” Inside the Navy,
March 26, 2012.
Congressional Research Service
45



Navy Shipboard Lasers for Surface, Air, and Missile Defense

accelerator in the background and the magnetic wiggler in the foreground. The wiggler converts the electron
beam power into laser light. Photo by Greg Adams, JLab.”
Figure F-2. Simplified Diagram of How an FEL Works

Source: Jefferson Lab web page providing an introduction to FELs, accessed November 16, 2010, at
http://www.jlab.org/FEL/feldescrip.html.
Figure F-3. Schematic of an FEL
(Version with two “wigglers”)

Source: Jefferson Lab web page describing its FEL, accessed November 16, 2010 at http://www.jlab.org/FEL/
felspecs.html. This FEL has two “wigglers”—one for producing infrared (IR) laser light, and one for producing
ultraviolet (UV) laser light. The FEL being developed by the Navy for shipboard use would likely produce only
infrared light. The arrows show the flow of electrons in the device, starting with the electron gun and injector in
the upper-right corner. “Rf linac” means radio frequency linear accelerator.
Congressional Research Service
46

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix G. Innovative Naval Prototypes (INPs)
The Office of Naval Researach (ONR) is developing the 100 kW FEL as an Innovative Naval
Prototype (INP). ONR describes INPs as follows:
[ONR’s work on] Leap Ahead Innovations include Innovative Naval Prototypes (INPs) and
Swampworks, and are technology investments that are potentially “game changing” or
“disruptive” in nature. INPs achieve a level of technology suitable for transition in four to
eight years. Innovative Naval Prototypes explore high 6.2 and 6.3 [research and development
budget category] technologies that can dramatically change the way Naval forces fight.
Programs in this category may be disruptive technologies that, for reasons of high risk or
radical departure from established requirements and concepts of operation, are unlikely to
survive without top leadership endorsement, and, unlike Future Naval Capabilities [another
category of ONR’s work], are initially too high risk for a firm transition commitment from
the acquisition community. INPs should be identified based on a balanced combination of
naval need and technology exploitation. Investments should be planned with the critical mass
needed to achieve a level of technology maturity suitable for transition in four to eight years.
Program Managers (PMs) are primarily selected from ONR, and in order to help facilitate the
transition to the acquisition community, Deputy PMs are typically chosen from the
Acquisition community. The CNR [Chief of Naval Research], in consultation with senior
Navy and Marine Corps leadership, identifies candidate INPs that are then forwarded to
Naval S&T [Science and Technology] Corporate Board (ASN-RDA, VCNO and the ACMC)
[the Assistant Secretary of the Navy, Research, Development, and Acquisition, the Vice
Chief of Naval Operations, and the Assistant Commandant of the Marine Corps] for approval
/ disapproval. Free Electron Laser is an innovative naval prototype. Swampworks efforts are
smaller in scope than INPs and are intended to produce results in one to three years. This
category is where we typically accept higher risk in an effort to produce higher payoff for the
warfighters.84



84 Source: Navy information paper on directed energy dated August 26, 2010.
Congressional Research Service
47

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix H. DOD Technology Readiness Levels
(TRLs)

DOD uses TRLs to characterize the developmental status of many weapon technologies. DOD
defines its TRLs as follows:
• TRL 1: Basic principles observed and reported.
• TRL 2: Technology concept and/or application formulated.
• TRL 3: Analytical and experimental critical function and/or characteristic proof
of concept.
• TRL 4: Component and/or breadboard validation in a laboratory environment.
• TRL 5: Component and/or breadboard validation in a relevant environment.
• TRL 6: System/subsystem model or prototype demonstration in a relevant
environment.
• TRL 7: System prototype demonstration in an operational environment.
• TRL 8: Actual system completed and qualified through test and demonstration.
• TRL 9: Actual system proven through successful mission operations.85


85 Source: Department of Defense, Technology Readiness Assessment (TRA) Deskbook, July 2009, accessed online at
http://www.dod.mil/ddre/doc/DoD_TRA_July_2009_Read_Version.pdf.
Congressional Research Service
48

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix I. Protocol on Blinding Lasers
This appendix provides information on the international protocol on blinding lasers and its
relationship to DOD laser programs, including the lasers discussed in this report.
Overview
The United States in 1995 ratified the 1980 Convention on Prohibitions or Restriction on the Use
of Certain Conventional Weapons Which May be Deemed to be Excessively Injurious or to Have
Indiscriminate Effects. An international review of the convention began in 1994 and concluded in
May 1996 with the adoption of, among other things, a new Protocol IV on blinding laser
weapons. The protocol prohibits the employment of lasers that are specifically designed to cause
permanent blindness to the naked eye or to the eye with corrective eyesight devices.
The United States ratified Protocol IV on December 23, 2008, and it entered into force for the
United States on July 21, 2009.86 DOD views the protocol as fully consistent with DOD policy.
DOD believes the lasers discussed in this report are consistent with DOD policy of prohibiting
the use of lasers specifically designed to cause permanent blindness to the naked eye or to the eye
with corrective eyesight devices.
Article-by-Article Discussion
Article 1 of the protocol prohibits the employment of “laser weapons specifically designed, as
their sole combat function or as one of their combat functions, to cause permanent blindness to
unenhanced vision, that is to the naked eye or to the eye with corrective eyesight devices.” DOD
states that:
This prohibition is fully consistent with the policy of the Department of Defense, which is to
prohibit the use of weapons so designed. Although the prospect of mass blinding was an
impetus for the adoption of the Protocol, it was not the intent of the Conference to prohibit
only mass blinding. Accordingly, under both the Blinding Laser Protocol and Department of
Defense policy, laser weapons designed specifically to cause such permanent blindness may
not be used against an individual enemy combatant.87

86 Treaties and Other International Acts Series 09-721.2, Weapons, Blinding Laser Weapons (Protocol IV), Protocol
Between the United States of America and Other Governments to the Convention on Prohibitions or Restrictions on the
Use of Certain Conventional Weapons which may be deemed to be Excessively Injurious or to have Indiscriminate
Effects of October 10, 1980
, accessed March 27, 2013, at http://www.state.gov/documents/organization/190580.pdf.
See also United States Department of State, Treaties in Force, A List of Treaties and Other International Agreements of
the United States in Force on January 1, 2012
, page 483.
87 Department of Defense, CCW: Article by Article Analysis of the Protocol on Blinding Laser Weapons, accessed
online at http://www.acq.osd.mil/tc/treaties/ccwapl/artbyart_pro4.htm. In January 1997, Secretary of Defense William
Perry issued a memorandum regarding DOD policy on blinding lasers which states in its entirety:
The Department of Defense prohibits the use of lasers specifically designed to cause permanent
blindness and supports negotiations to prohibit the use of such weapons. However, laser systems
are absolutely vital to our modern military. Among other things, they are currently used for
detection, targeting, range-finding, communications, and target destruction. They provide a critical
technological edge to U.S. forces and allow our forces to fight, win and survive on an increasingly
lethal battlefield. In addition, lasers provide significant humanitarian benefits. They allow weapon
(continued...)
Congressional Research Service
49

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Article 2 of the protocol obligates parties to “take all feasible precautions to avoid the incidence
of permanent blindness to unenhanced vision.” DOD states that “This requirement is also fully
consistent with the policy of the Department of Defense which is to reduce, through training and
doctrine, inadvertent injuries from the use of lasers designed for other purposes, such as range-
finding, target discrimination, and communications.”88
Article 3 of the protocol states that “blinding as an incidental or collateral effect of the legitimate
military employment of laser systems, including laser systems used against optical equipment, is
not covered” by the Protocol. DOD states that this article “reflects a recognition of the
inevitability of eye injury as the result of lawful battlefield laser use. Its use is an important
measure in avoiding war crimes allegations where injury occurs from legitimate laser uses.”89
DOD further states that
As a matter of policy, the United States will refrain from the use of laser weapons prohibited
by the Protocol. Therefore, while the Blinding Laser Weapons Protocol does not legally
apply to all armed conflicts, it is U.S. policy to apply the Protocol to all such conflicts,
however they may be characterized, and in peacetime.... The Protocol is fully consistent with
U.S. military interests, Department of Defense policy and humanitarian concerns generally.
Accordingly, the United States should ratify it at an early date.90
Excerpt from 2007 DSB Task Force Report
A 2007 report by a Defense Science Board (DSB) task force on directed energy weapons stated:
The task force heard concerns over the legal and policy aspects of employing directed energy
weapons. The concern is seen by some as inhibiting or deterring development of such
weapons with [i.e., due to] reluctance to invest in capabilities that might not be useable in the
battlespace due to legal or policy constraints. Much of this concern is the product of
inadequate communications rather than any unusual legal or policy constraints.

(...continued)
systems to be increasingly discriminate, thereby reducing collateral damage to civilian lives and
property. The Department of Defense recognizes that accidental or incidental eye injuries may
occur on the battlefield as the result of the use of lasers not specifically designed to cause
permanent blindness. Therefore, we continue to strive, through training and doctrine, to minimize
these injuries.
(Memorandum dated January 17, 1997, from Secretary of Defense William J. Perry to the
secretaries of the military departments, et al, on DOD policy on blinding lasers, provided to CRS
on October 4, 2010, by the Navy Office of Legislative Affairs.)
Paragraph 4.3 of DOD Instruction 3100.11 of March 31, 2000, on the illumination of objects in space by lasers, states:
“The use of lasers specifically designed to cause permanent blindness in humans is prohibited, in accordance with [the
above-cited January 17, 1997, memorandum from the Secretary of Defense].”
88 Department of Defense, CCW: Article by Article Analysis of the Protocol on Blinding Laser Weapons, accessed
online at http://www.acq.osd.mil/tc/treaties/ccwapl/artbyart_pro4.htm.
89 Department of Defense, CCW: Article by Article Analysis of the Protocol on Blinding Laser Weapons, accessed
online at http://www.acq.osd.mil/tc/treaties/ccwapl/artbyart_pro4.htm.
90 Department of Defense, CCW: Article by Article Analysis of the Protocol on Blinding Laser Weapons, accessed
online at http://www.acq.osd.mil/tc/treaties/ccwapl/artbyart_pro4.htm.
Congressional Research Service
50

Navy Shipboard Lasers for Surface, Air, and Missile Defense

The Office of the Secretary of Defense and service component Judge Advocate General
Offices have determined that directed energy weapons are, in and of themselves, legal
according to all U.S. laws, [as well as] the [international] Laws of Armed Conflict, and are
consistent with all current U.S. treaty and international obligations. Noting that directed
energy weapons are legal does not imply that their use in a particular situation is legal. There
are situations where the use of a directed energy weapon could be contrary to U.S. or
international law. This consideration is the case with virtually any weapon.
One such constraint is the use of a laser weapon to intentionally blind combatants. The States
Parties to the 1980 Convention on Prohibitions or Restrictions on the use of Certain
Conventional Weapons Which May Be Deemed to be Excessively Injurious or to have
Indiscriminate Effects had a fourth protocol adopted in 1995, where the intent is to prohibit
laser weapons that are specifically used to blind combatants systematically and intentionally.
While the United States is not a signatory to this particular protocol, the DOD has issued a
policy that prohibits the use of lasers specifically designed to cause permanent blindness of
unenhanced vision.
That same policy stated that “… laser systems are absolutely vital to our modern military.
Among other things, they are currently used for detection, targeting, range-finding,
communications, and target destruction. They provide a critical technological edge to U.S.
forces and allow our forces to fight, win, and survive on an increasingly lethal battlefield. In
addition, lasers provide significant humanitarian benefits. They allow weapon systems to be
increasingly discriminate, thereby reducing collateral damage to civilian lives and property.
The [DOD] recognizes that accidental or incidental eye injuries may occur on the battlefield
as the result of the use of legitimate laser systems.91 Therefore, we continue to strive, through
training and doctrine, to minimize these injuries.”
A similarly supportive policy has been stated for other directed energy weapons. At the same
time, when such weapons are new to the battlespace, there will be a policy determination on
their initial introduction to include an understanding by appropriate policy makers of the
intended uses. Such determination needs to be informed by a thorough and credible
understanding of the risk and benefits of employing such weapons. Beyond the process of
approving first use, the expectation is that the Laws of Armed Conflict, rules of engagement,
and combat commander direction will govern employment of directed energy weapons as is
the case for kinetic weapons.92

91 The text of the 1997 Secretary of Defense memorandum quoted in footnote 87 is slightly different at this point.
Instead of “legitimate laser systems,” the 1997 memorandum uses the phrase “lasers not specifically designed to cause
permanent blindness.”
92 [Report of] Defense Science Board Task Force on Directed Energy Weapons, Washington, December 2007, pp. xii-
xiii. Ellipsis and material in brackets as in original.
Congressional Research Service
51

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix J. Illumination of Objects in Space
In briefings on potential shipboard lasers, Navy officials noted DOD Instruction (DODI) 3100.11
of March 31, 2000, which states in part:
All DoD laser activities shall be conducted in a safe and responsible manner that protects
space systems, their mission effectiveness, and humans in space, consistent with national
security requirements, in accordance with [DoD Directive 3100.10, “Space Policy,” July 9,
1999]. All such activities shall be coordinated with the Commander in Chief of U.S. Space
Command (CINCSPACE) for predictive avoidance or deconfliction with U.S., friendly, and
other space operations.93
The technical community in the Navy believes that this instruction effectively requires the
military services to implement measures for ensuring that objects in space face low or no
exposure to laser energy. The technical community believes that this in turn would require that
shipboard lasers incorporate so-called predictive avoidance (PA) software and/or other features
that would prevent them from firing in the direction of an object in space. The community
believes that two policy changes would be required to permit Navy surface ships to use shipboard
lasers with power levels high enough that they could cause unwanted collateral damage to
satellites:
• The community believes that current safety criteria relating to satellites are
overly restrictive and should be replaced with a new policy that includes what the
Navy views as more realistic safety criteria.
• The community believes that certain data relating to sensitive satellites should be
removed from the PA system so that the classification level of the PA system can
be lowered.


93 Department of Defense Instruction Number 3100.11, March 31, 2000, on Illumination of Objects in Space by lasers,
paragraph 4.2.
Congressional Research Service
52

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Appendix K. Section 220 of FY2000 Defense
Authorization Act (P.L. 106-398)

As mentioned earlier (see footnote 63 in “Options for Congress”), the option of directing the
Navy to develop and install lasers with certain capabilities on a certain number of Navy surface
ships by a certain date could take the form of a provision broadly similar to Section 220 of the
FY2001 defense authorization act (H.R. 4205/P.L. 106-398 of October 30, 2000), which set goals
for the deployment of unmanned combat aircraft and unmanned combat vehicles. The text of
Section 220 is as follows:
SEC. 220. UNMANNED ADVANCED CAPABILITY COMBAT AIRCRAFT AND
GROUND COMBAT VEHICLES.
(a) GOAL- It shall be a goal of the Armed Forces to achieve the fielding of unmanned,
remotely controlled technology such that—
(1) by 2010, one-third of the aircraft in the operational deep strike force aircraft fleet are
unmanned; and
(2) by 2015, one-third of the operational ground combat vehicles are unmanned.
(b) REPORT ON UNMANNED ADVANCED CAPABILITY COMBAT AIRCRAFT AND
GROUND COMBAT VEHICLES- (1) Not later than January 31, 2001, the Secretary of
Defense shall submit to the congressional defense committees a report on the programs to
demonstrate unmanned advanced capability combat aircraft and ground combat vehicles
undertaken jointly between the Director of the Defense Advanced Research Projects Agency
and any of the following:
(A) The Secretary of the Army.
(B) The Secretary of the Navy.
(C) The Secretary of the Air Force.
(2) The report shall include, for each program referred to in paragraph (1), the following:
(A) A schedule for the demonstration to be carried out under that program.
(B) An identification of the funding required for fiscal year 2002 and for the future-years
defense program to carry out that program and for the demonstration to be carried out under
that program.
(C) In the case of the program relating to the Army, the plan for modification of the existing
memorandum of agreement with the Defense Advanced Research Projects Agency for
demonstration and development of the Future Combat System to reflect an increase in
unmanned, remotely controlled enabling technologies.
(3) The report shall also include, for each Secretary referred to in paragraphs (1)(A), (1)(B),
and (1)(C), a description and assessment of the acquisition strategy for unmanned advanced
capability combat aircraft and ground combat vehicles planned by that Secretary, which shall
include a detailed estimate of all research and development, procurement, operation, support,
ownership, and other costs required to carry out such strategy through the year 2030, and—
Congressional Research Service
53

Navy Shipboard Lasers for Surface, Air, and Missile Defense

(A) in the case of the acquisition strategy relating to the Army, the transition from the
planned acquisition strategy for the Future Combat System to an acquisition strategy capable
of meeting the goal specified in subsection (a)(2);
(B) in the case of the acquisition strategy relating to the Navy—
(i) the plan to implement a program that examines the ongoing Air Force unmanned combat
air vehicle program and identifies an approach to develop a Navy unmanned combat air
vehicle program that has the goal of developing an aircraft that is suitable for aircraft carrier
use and has maximum commonality with the aircraft under the Air Force program; and
(ii) an analysis of alternatives between the operational deep strike force aircraft fleet and that
fleet together with an additional 10 to 20 unmanned advanced capability combat aircraft that
are suitable for aircraft carrier use and capable of penetrating fully operational enemy air
defense systems; and
(C) in the case of the acquisition strategy relating to the Air Force—
(i) the schedule for evaluation of demonstration results for the ongoing unmanned combat air
vehicle program and the earliest possible transition of that program into engineering and
manufacturing development and procurement; and
(ii) an analysis of alternatives between the currently planned deep strike force aircraft fleet
and the operational deep strike force aircraft fleet that could be acquired by fiscal year 2010
to meet the goal specified in subsection (a)(1).
(c) FUNDS- Of the amount authorized to be appropriated for Defense-wide activities under
section 201(4) for the Defense Advanced Research Projects Agency, $100,000,000 shall be
available only to carry out the programs referred to in subsection (b)(1).
(d) DEFINITIONS- For purposes of this section:
(1) An aircraft or ground combat vehicle has ‘unmanned advanced capability’ if it is an
autonomous, semi-autonomous, or remotely controlled system that can be deployed, re-
tasked, recovered, and re-deployed.
(2) The term ‘currently planned deep strike force aircraft fleet’ means the early entry, deep
strike aircraft fleet (composed of F-117 stealth aircraft and B-2 stealth aircraft) that is
currently planned for fiscal year 2010.
(3) The term ‘operational deep strike force aircraft fleet’ means the currently planned deep
strike force aircraft fleet, together with at least 30 unmanned advanced capability combat
aircraft that are capable of penetrating fully operational enemy air defense systems.
(4) The term ‘operational ground combat vehicles’ means ground combat vehicles acquired
through the Future Combat System acquisition program of the Army to equip the future
objective force, as outlined in the vision statement of the Chief of Staff of the Army.

Congressional Research Service
54

Navy Shipboard Lasers for Surface, Air, and Missile Defense

Author Contact Information

Ronald O'Rourke

Specialist in Naval Affairs
rorourke@crs.loc.gov, 7-7610

Congressional Research Service
55