How FDA Approves Drugs and Regulates Their Safety and Effectiveness

(name redacted)
Specialist in Drug Safety and Effectiveness

September 24, 2013
Summary

The Food and Drug Administration (FDA), a regulatory agency within the Department of Health and Human Services, regulates the safety and effectiveness of drugs sold in the United States. FDA divides that responsibility into two phases. In the **preapproval** (premarket) phase, FDA reviews manufacturers’ applications to market drugs in the United States; a drug may not be sold unless it has FDA approval. Once a drug is on the market, FDA continues its oversight of drug safety and effectiveness. That **postapproval** (postmarket) phase lasts as long as the drug is on the market. Beginning with the Food and Drugs Act of 1906, Congress has incrementally refined and expanded FDA’s responsibilities regarding drug approval and regulation.

The progression to drug approval begins before FDA involvement. First, basic scientists work in the laboratory and with animals; second, a drug or biotechnology company develops a prototype drug. That company must seek and receive FDA approval, by way of an investigational new drug (IND) application, to test the product with human subjects. It carries out those tests, called clinical trials, sequentially in Phase I, II, and III studies, which involve increasing numbers of subjects. The manufacturer then compiles the resulting data and analysis in a new drug application (NDA).

At that point, FDA reviews the NDA with three major concerns: (1) safety and effectiveness in the drug’s proposed use; (2) appropriateness of the proposed labeling; and (3) adequacy of manufacturing methods to assure the drug’s identity, strength, quality, and purity. The Federal Food, Drug, and Cosmetic Act (FFDCA) and associated regulations detail the requirements for each step. FDA uses a few special mechanisms to expedite drug development and the review process when a drug might address an unmet need or a serious disease or condition. Those mechanisms include accelerated approval, animal efficacy approval, fast track designation, breakthrough therapy designation, and priority review.

Once FDA has approved an NDA, the drug may enter the U.S. market, but FDA continues to address drug production, distribution, and use. Its activities, based on ensuring drug safety and effectiveness, address product integrity, labeling, reporting of research and adverse events, surveillance, drug studies, risk management, information dissemination, off-label use, and direct-to-consumer advertising, all topics in which Congress has traditionally been interested.

FDA seeks to ensure product integrity through product and facility registration; inspections; chain-of-custody documentation; and technologies to protect against counterfeit, diverted, subpotent, adulterated, misbranded, and expired drugs. FDA’s approval of an NDA includes the drug’s labeling; the agency may require changes once a drug is on the market based on new information. It also prohibits manufacturer promotion of uses that are not specified in the labeling. The FFDCA requires that manufacturers report to FDA adverse events related to its drugs; clinicians and other members of the public may report adverse events to FDA. The agency’s surveillance of drug-related problems, which had primarily focused on analyses of various adverse-event databases, is now expanding to more active uses of evolving computer technology and links to other public and private information sources.

The FFDCA allows FDA to require a manufacturer to conduct postapproval studies of drugs. The law specifies when FDA must attach that requirement to the NDA approval and when FDA may issue the requirement after a drug is on the market. To manage exceptional risks of drugs, FDA may also require patient or clinician guides and restrictions on distribution. The agency publicly
disseminates information about drug safety and effectiveness; and regulates the industry promotion of products to clinicians and the public.
Contents

Legislative History of Drug Regulation.. 1
How FDA Approves New Drugs .. 3
 The Standard Process of Drug Approval ... 4
 Investigational New Drug (IND) Application ... 4
 Clinical Trials ... 5
 New Drug Application (NDA) ... 5
 FDA Review .. 6
 Special Mechanisms to Expedite the Development and Review Process .. 7
How FDA Regulates Approved Drugs .. 12
 FDA Entities Responsible for Drug Postapproval Regulation .. 12
 FDA Drug-Regulation Activities .. 13
 Product Integrity ... 14
 Reporting and Surveillance .. 15
 Drug Studies .. 17
 Risk Management .. 18
 Information Dissemination .. 20
 Labeling .. 21
 Off-Label Use ... 24
 Direct-to-Consumer Advertising ... 25

Figures

 Figure 1. Drug Development Path .. 4

Tables

 Table 1. Examples of Drug Laws that Amended the FFDCA .. 3
 Table 2. Comparison of FDA's Expedited Programs for Serious Conditions 10

Appendixes

 Appendix. Abbreviations and Acronyms ... 26

Contacts

 Author Contact Information .. 27
The Food and Drug Administration (FDA) oversees the approval and regulation of drugs entering the U.S. market. The agency, part of the Department of Health and Human Services (HHS), is led by the Commissioner of Food and Drugs, who executes the agency’s responsibilities on behalf of the HHS Secretary. Two regulatory frameworks support the FDA’s review of prescription drugs. First, FDA reviews the safety and effectiveness of new drugs that manufacturers wish to market in the United States; this process is called premarket approval or preapproval review. Second, once a drug has passed that threshold and is FDA-approved, FDA acts through its postmarket or post-approval regulatory procedures.

This report is a primer on drug approval and regulation: it describes (1) how drugs are approved and come to market, including FDA’s role in that process and (2) FDA and industry roles once drugs are on the pharmacy shelves.

Legislative History of Drug Regulation

Derived from the Dutch word meaning to boast (quacken), “quack” is the word Americans have commonly used to describe charlatans in medicine. Quacks peddled adulterated and mislabeled medicines throughout the United States without penalty until 1906, when Congress passed the Food and Drugs Act, one section of which outlawed the practice.

Over the next half-century, Congress passed two major pieces of legislation expanding FDA authority. It passed the Federal Food, Drug, and Cosmetic Act (FFDCA) in 1938, requiring that drugs be proven safe before manufacturers may sell them in interstate commerce. Then, in 1962, in the wake of deaths and birth defects from the tranquilizer thalidomide marketed in Europe,
Congress passed the Kefauver-Harris Drug Amendments to the FFDCA, increasing safety provisions and requiring that manufacturers show drugs to be effective as well.

Congress has amended the FFDCA many times, leading to FDA’s current mission of assuring Americans that the medicines they use do no harm and actually work—that they are, in other words, safe and effective. In recent decades Congress has passed additional laws to boost pharmaceutical research and development and to speed the approval of new medicines. (See Table 1 for examples.) The history of FDA law, regulation, and practice reflects the tension between making drugs available to the public and ensuring that those drugs be safe and effective. Advocates of industry, public health, consumers, and patients with specific diseases urge FDA (and Congress) to act—sometimes to speed up and sometimes to slow down the approval process. As science evolves and public values change, finding an appropriate balance between access and safety and effectiveness is an ongoing challenge.

Since the 1992 Prescription Drug User Fee Act (PDUFA), the budget for FDA’s human drugs program has had two funding streams: budget authority (congressional appropriations) and user fees. The user fee supplementation of the program’s budget initially went to a narrowly defined set of activities to eliminate the backlog of new drug applications pending FDA review and to maintain an increased staff effort on incoming applications. With each five-year reauthorization, Congress has expanded the range of activities the fees may cover. In 2012, Congress added similar fee collection authority for the review of generic drug applications.

While not the focus of this report, FDA also regulates products other than drugs—for example, biological products, medical devices, dietary supplements, foods, cosmetics, animal drugs, and tobacco products. Sometimes the agency addresses issues that straddle two or more product types that the law treats differently.

10 See the section on “Title III—Fees Relating to Generic Drugs” in CRS Report R42680, The Food and Drug Administration Safety and Innovation Act (FDASIA, P.L. 112-144), coordinated by (name redacted).

11 Whereas the FFDCA authorizes FDA to approve and regulate drugs, the Public Health Service Act (PHSA) authorizes FDA to license biological products (e.g., vaccines). Many of the FDA procedures described in this report also apply to the agency’s regulation of biological products.

12 See CRS reports on other FDA activities, such as CRS Report R42130, FDA Regulation of Medical Devices, by (name redacted); CRS Report R43062, Regulation of Dietary Supplements, by (name redacted); CRS Report R42885, Food Safety Issues for the 113th Congress, by (name redacted); CRS Report R42594/FDA Regulation (continued...)

How FDA Approves Drugs and Regulates Their Safety and Effectiveness

Table 1. Examples of Drug Laws that Amended the FFDCA

<table>
<thead>
<tr>
<th>Year</th>
<th>Act Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>Orphan Drug Act (P.L. 97-414) provided incentives for pharmaceutical manufacturers to develop drugs, biotechnology products, and medical devices for the treatment of rare diseases and conditions.</td>
</tr>
<tr>
<td>1984</td>
<td>Hatch-Waxman Act (Drug Price Competition and Patent Term Restoration Act of 1984, P.L. 98-417) was a compromise balancing greater patent protection of manufacturers with quicker public access to lower-priced generic drugs.</td>
</tr>
<tr>
<td>1998</td>
<td>Food and Drug Administration Modernization Act (FDAMA, P.L. 105-115) ushered in user fees and performance goals for faster drug approvals.</td>
</tr>
<tr>
<td>1998</td>
<td>Food and Drug Administration Modernization Act (FDAMA, P.L. 105-115) relaxed clinical testing requirements, eased access to experimental therapies, and awarded drugmakers six more months of marketing protection for testing drugs in pediatric patients.</td>
</tr>
<tr>
<td>2002</td>
<td>Best Pharmaceuticals for Children Act (BPCA, P.L. 107-109) reauthorized the FDAMA pediatric testing provision.</td>
</tr>
<tr>
<td>2002</td>
<td>Public Health Security and Bioterrorism Preparedness and Response Act (P.L. 107-188) extended the drug user fee law for five more years.</td>
</tr>
<tr>
<td>2003</td>
<td>Pediatric Research Equity Act (PREA, P.L. 108-155) required manufacturers to include pediatric assessments in new drug applications.</td>
</tr>
<tr>
<td>2007</td>
<td>Food and Drug Administration Amendments Act (FDAAA, P.L. 110-85) went beyond the anticipated reauthorization of PDUFA, BPCA, and PREA (among other provisions) by also expanding FDA authority to regulate drug safety.</td>
</tr>
<tr>
<td>2012</td>
<td>Food and Drug Administration Safety and Innovation Act (FDASIA, P.L. 112-144) reauthorized PDUFA, permanently authorized BPCA and PREA, authorized a new Generic Drug User Fee Act (GDUFA), amended drug-related sections of the FFDCA regarding drug shortages, supply chain security, and drug development incentives, and included other provisions regarding other FDA-regulated products.</td>
</tr>
</tbody>
</table>

How FDA Approves New Drugs

To market a prescription drug in the United States, a manufacturer needs FDA approval. To get that approval, the manufacturer must demonstrate the drug’s safety and effectiveness according to criteria specified in law and agency regulations, ensure that its manufacturing plant passes FDA inspection, and obtain FDA approval for the drug’s labeling—a term that covers all written material about the drug, including, for example, packaging, prescribing information for physicians, and patient brochures.

The approval process begins before the law requires FDA involvement. Figure 1 illustrates a product’s timeline both before and during FDA involvement.

(...continued)

of Cosmetics and Personal Care Products, by (name redacted) ; and CRS Report R41304, FDA Final Rule Restricting the Sale and Distribution of Cigarettes and Smokeless Tobacco, by (name redacted) and (name redacted).

13 FDA-approved drugs are designated by law into only two categories: prescription and nonprescription (also referred to as over-the-counter). No drug was prescription-only until the 1951 Humphrey-Durham amendments [P.L. 82-215, the Food, Drug, and Cosmetics Act Amendments Act, 1951], which stated, “A drug intended for use by man which ... because of its toxicity or other potentiality for harmful effect, or the method of its use, or the collateral measures necessary to its use, is not safe for use except under the supervision of a practitioner licensed by law to administer such drug” (FFDCA §503(b)(1)).
The research and development process for a finished drug usually begins in the laboratory—often with basic research conducted or funded by the federal government. When basic research yields an idea that someone identifies as a possible drug component, government or private research groups focus attention on a prototype design. At some point, private industry (either a large, established company or a newer, smaller, start-up company) continues to develop the idea, eventually testing the drug in animals. When the drug is ready for testing in humans, the FDA must get involved.

Figure 1. Drug Development Path

<table>
<thead>
<tr>
<th>Basic research</th>
<th>Preclinical development</th>
<th>Clinical development Phases I, II, and III</th>
<th>FDA review</th>
<th>Postapproval & marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>IND</td>
<td></td>
<td>NDA</td>
<td>Approval</td>
<td></td>
</tr>
</tbody>
</table>

Source: Created by CRS.

Note: FDA = Food and Drug Administration. IND = investigational new drug application. NDA = new drug application. NIH = National Institutes of Health.

The Standard Process of Drug Approval

This section outlines key activities leading to FDA’s approval of a new drug for marketing in the United States. The law allows an abbreviated process for a generic drug—one chemically and therapeutically identical to an already approved drug.

Investigational New Drug (IND) Application

Except under very limited circumstances, FDA requires data from clinical trials—formally designed, conducted, and analyzed studies of human subjects—to provide evidence of a drug’s safety and effectiveness. Before testing in humans—called clinical testing—the drug’s sponsor

14 CRS Report R41705, The National Institutes of Health (NIH): Organization, Funding, and Congressional Issues, by (name redacted) and (name redacted), provides a definition (“basic research is research in the fundamental medical sciences, sometimes called lab or bench research, while clinical research involves patients”) and a discussion of its relationship to drug development and clinical research.

How FDA Approves Drugs and Regulates Their Safety and Effectiveness

(usually its manufacturer) must file an investigational new drug (IND) application with FDA. The IND application includes information about the proposed clinical study design, completed animal test data, and the lead investigator’s qualifications. It must also include the written approval of an Institutional Review Board, which has determined that the study participants will be made aware of the drug’s investigative status and that any risk of harm will be necessary, explained, and minimized. The application must include an “Indication for Use” section that describes what the drug does and the clinical condition and population for which the manufacturer intends its use. Trial subjects should be representative of that population. The FDA has 30 days to review an IND application. Unless FDA objects, a manufacturer may then begin clinical testing.

Clinical Trials

With IND status, researchers test in a small number of human volunteers the safety they had demonstrated in animals. These trials, called Phase I clinical trials, attempt, in FDA’s words, “to determine dosing, document how a drug is metabolized and excreted, and identify acute side effects.” If the sponsor considers the product still worthy of investment, it continues with Phase II and Phase III clinical trials. Those trials gather evidence of the drug’s efficacy and effectiveness in larger groups of individuals with the particular characteristic, condition, or disease of interest, while continuing to monitor safety.

Safety, Efficacy, and Effectiveness

Safety is often measured by toxicity testing to determine the highest tolerable dose or the optimal dose of a drug needed to achieve the desired benefit. Studies that look at safety also seek to identify any potential adverse effects that may result from exposure to the drug. Efficacy refers to whether a drug demonstrates a health benefit over a placebo or other intervention when tested in an ideal situation, such as a tightly controlled clinical trial. Effectiveness describes how the drug works in a real-world situation. Effectiveness is often lower than efficacy because of, for example, interactions with other medications or health conditions of the patient, or a sufficient dose or duration of use was not prescribed by the physician or followed by the patient.

New Drug Application (NDA)

Once a manufacturer completes clinical trials, it submits a new drug application (NDA) to FDA’s Center for Drug Evaluation and Research (CDER). In addition to the clinical trial results, the NDA contains information about the manufacturing process and facilities, including quality control and assurance procedures. Other mandatory information: a product description (chemical formula, specifications, pharmacodynamics, and pharmacokinetics); the indication (specifying

16 FFDCA §505(1) and 21 CFR Part 312—Investigational New Drug Application.
20 “Pharmacokinetic [PK] studies provide information on what the body does to a drug. More specifically, it covers how a drug is absorbed, distributed, metabolized and eliminated by the body. ... Pharmacodynamic [PD] studies provide information on what a drug does to the body. PD examines how a drug works in the body and the amount of drug needed to provide an effect” (quote is from FDA, “Pediatric Studies Characteristics,” http://www.fda.gov/ScienceResearch/SpecialTopics/PediatricTherapeuticsResearch/ucm143531.htm, which is no longer available on the FDA website; similar information is provided in Seongeun Julia Cho, “Principles and Applications of (continued...)
How FDA Approves Drugs and Regulates Their Safety and Effectiveness

one or more diseases or conditions for which the drug would be used and the population who would use it); labeling; and a proposed Risk Evaluation and Mitigation Strategy (REMS), if appropriate.21

During the NDA review, CDER officials evaluate the drug’s safety and effectiveness data, analyze samples, inspect the facilities where the finished product will be made, and check the proposed labeling for accuracy.

FDA Review

FDA considers three overall questions in its review of an NDA:22

- Whether the drug is safe and effective in its proposed use, and whether the benefits of the drug outweigh the risks.
- Whether the drug’s proposed labeling (package insert) is appropriate, and what it should contain.
- Whether the methods used to manufacture the drug and the controls used to maintain the drug’s quality are adequate to preserve the drug’s identity, strength, quality, and purity.

FDA scientific and regulatory personnel consider the NDA and prepare written assessments in several categories, including Medical, Chemistry, Pharmacology, Statistical, Clinical, Pharmacology, Biopharmaceutics, Risk Assessment and Risk Mitigation, Proprietary Name, and Label and Labeling.23

The FFDCA requires “substantial evidence” of drug safety and effectiveness.24 FDA has interpreted this term to mean that the manufacturer must provide at least two adequate and well-controlled Phase III clinical studies, each providing convincing evidence of effectiveness.25 The agency, however, exercises flexibility in what it requires as evidence.26 As its regulations describe in detail, FDA can assess safety and effectiveness in a variety of ways, relying on combinations of studies by the manufacturer and reports of other studies in the medical literature.27 For some NDAs, FDA convenes advisory panels of outside experts to review the clinical data.28 While not

(...continued)

21 NDA content and format requirements are listed in 21 CFR 314.50.
23 The listed categories are the sections of drug approval packages posted by FDA; for example, see the December 2012 files regarding Eliquis (apixaban), http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/202155Orig1s000TOC.cfm.
24 FFDCA (P.L. 75-717, 1938), §505(c) and (d).
25 The requirements for adequate and well-controlled studies are given in 21 CFR 314.126.
27 The requirements for adequate and well-controlled studies are given in 21 CFR 314.126.
28 FDA has established various advisory committees whose members advise the agency. The names of most

(continued...)
bound by their recommendations regarding approval, FDA usually follows advisory panel recommendations.

FDA approves an NDA based on its review of the clinical and nonclinical research evidence of safety and effectiveness, manufacturing controls and facility inspection, and labeling. An approval may include specific conditions, such as required post-approval studies (or post-approval clinical trials, sometimes referred to as Phase IV clinical trials) that the sponsor must conduct after marketing begins. An approval may also include restrictions on distribution, required labeling disclosures, or other elements of Risk Evaluation and Mitigation Strategies (REMS), which are described below in the section titled “How FDA Regulates Approved Drugs.”

FDA has 180 days to review an NDA. If it finds deficiencies, such as missing information, the clock stops until the manufacturer submits the additional information. If the manufacturer cannot respond to FDA’s request (e.g., if it has not done a required study, making it impossible to evaluate safety or effectiveness), the manufacturer may voluntarily withdraw the application. If and when the manufacturer can provide the information, the clock resumes and FDA continues the review.

When FDA makes a final determination, it sends the applicant a “complete response letter.” If FDA does not approve an application, regulations state that the letter must describe the specific deficiencies the agency identified and recommend ways to make the application viable. An unsuccessful applicant may request a hearing. Regulations identify the reasons for which FDA can reject an NDA, which include problems with clinical evidence of safety and effectiveness for its proposed use, manufacturing facilities and controls, labeling, access to facilities or testing samples, human subject protections, and patent information.

Special Mechanisms to Expedite the Development and Review Process

Not all reviews and applications follow the standard procedures. For drugs that address unmet needs or serious conditions, have potential to offer better outcomes or fewer side effects, or meet

(...continued)

committees relate to an area of medicine (such as the Cardiovascular and Renal Drugs Advisory Committee) and some reflect cross-cutting issues (such as the Drug Safety and Risk Management Advisory Committee); see FDA, “Committees & Meeting Materials,” http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/default.htm.

30 21 CFR 314.125. Refusal to approve an application.
other criteria associated with improved public health, FDA uses several formal mechanisms to expedite the development or review processes:31

- **Fast track** and **breakthrough product** designations affect the timing and smoothness of the application process. Such designation does not alter the types of evidence required to demonstrate safety and effectiveness.

- **Accelerated approval** and **animal efficacy approval** change what is needed in an application. Rather than requiring evidence of effectiveness on the final clinical endpoint, approval may be based on effectiveness on a surrogate or intermediate clinical outcome.32

- **Priority review** designation affects the timing of the review, not the process (neither content nor timing) leading to submission of an application.

Table 2 compares these mechanisms across several development and review characteristics.

In addition to the five mechanisms described above, Congress has provided FDA with other tools aimed at bringing products to the public. Through various statutory authorities and regulatory actions, FDA provides incentives to those who would develop certain categories of drugs. The main set of incentives is the granting of market exclusivity, while a newer incentive is providing priority review vouchers. The FFDCA has provisions to grant market exclusivity for statutorily defined time periods (in months or years) to the holder33 of the NDA for a product that is, for example, the first generic version of a drug to come to market,34 a drug used in the treatment of a rare disease or condition,35 certain pediatric uses of approved drugs,36 and new qualified infectious disease products.37 During the period of exclusivity, FDA does not grant marketing approval to another manufacturer’s product. FDA may award a priority review voucher (shortening the time from an application’s submission to FDA’s approval decision) to the

32 A clinical endpoint “is a characteristic or variable that directly measures a therapeutic effect of a drug—an effect on how a patient feels (e.g., symptom relief), functions (e.g., improved mobility) or survives.” “A surrogate endpoint is a marker, such as a laboratory measurement, radiographic image, physical sign, or other measure that is thought to predict clinical benefit, but is not itself a measure of clinical benefit.” An intermediate clinical endpoint is a “clinical endpoint ... that can be measured earlier than an effect on irreversible morbidity or mortality (IMM)” and is a “measurement of a therapeutic effect that is considered reasonably likely to predict the clinical benefit of a drug, such as an effect on IMM” (FDA, “DRAFT Guidance for Industry: Expedited Programs for Serious Conditions—Drugs and Biologics,” CDER and CBER, June 2013, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM358301.pdf).

33 The NDA holder is usually the manufacturer.

34 FFDCA §505(j); CRS Report R41114, The Hatch-Waxman Act: Over a Quarter Century Later, by (name redacted) and (name redacted).

35 FFDCA §§525-527 [21 USC 360aa,bb,cc].

36 FFDCA §505A [21 USC 355a]; CRS Report RL33986, FDA’s Authority to Ensure That Drugs Prescribed to Children Are Safe and Effective, by (name redacted).

37 FFDCA §505E [21 USC 355f]; see section on “Generating Antibiotic Incentives Now,” by (name redacted), in CRS Report R42680, The Food and Drug Administration Safety and Innovation Act (FDASIA, P.L. 112-144), coordinated by (name redacted).
manufacturer with a successful NDA for a drug used for certain tropical or rare pediatric diseases. The manufacturer may use the voucher (or sell it to another manufacturer) to get priority review of a subsequent NDA.

Other options fit limited situations and support shorter times from idea to approved public use. For example, the Project BioShield Act of 2004 and the Pandemic and All-Hazards Preparedness Reauthorization Act of 2013 (PAHPRA) allow the HHS Secretary to authorize in certain circumstances the emergency use of products or uses that do not yet have FDA approval.38

Table 2. Comparison of FDA’s Expedited Programs for Serious Conditions

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Fast Track</th>
<th>Breakthrough Therapy</th>
<th>Accelerated Approval</th>
<th>Animal Efficacy</th>
<th>Priority Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature of program</td>
<td>Product designation</td>
<td>Product designation</td>
<td>Process alteration</td>
<td>Process alteration</td>
<td>Product designation</td>
</tr>
<tr>
<td>Authority</td>
<td>FFDCA §506(b)</td>
<td>FFDCA §506(a)</td>
<td>21 CFR 314 Subpart H</td>
<td>21 CFR 314 Subpart I</td>
<td>CDER MAPP 6020.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FFDCA §506(c)</td>
<td></td>
<td>CBER SOPP 8405</td>
</tr>
<tr>
<td>Establishing vehicle</td>
<td>FDAMA, FDASIA</td>
<td>FDASIA</td>
<td>rules, FDASIA</td>
<td>rules</td>
<td>policy, PDUFA³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AND if approved, would provide a significant improvement in safety or effectiveness</td>
</tr>
<tr>
<td>Qualifying criteria</td>
<td>Would treat a serious condition (variously defined)</td>
<td>AND nonclinical or clinical data demonstrate the potential to address unmet medical need</td>
<td>AND preliminary clinical evidence indicates that the drug may demonstrate substantial improvement on a clinically significant endpoint(s) over available therapies</td>
<td>AND generally provides meaningful advantage over available therapies AND demonstrates an effect on a surrogate endpoint that is reasonably likely to predict clinical benefit or on an intermediate clinical endpoint</td>
<td>AND human efficacy studies cannot be ethically or feasibly conducted AND safety has been established AND “adequate and well-controlled animal studies ... establish that the drug product is reasonably likely to produce clinical benefit in humans”</td>
</tr>
<tr>
<td>Alternate qualifying criteria</td>
<td>• designated qualified infectious disease product (QIDP)³</td>
<td></td>
<td></td>
<td></td>
<td>• proposed labeling change pursuant to a report on a pediatric study under 505A⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• designated QIDP⁵</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• priority review voucher⁶</td>
</tr>
<tr>
<td>Benefits</td>
<td>• actions to expedite development and review • rolling review</td>
<td>• all fast track features • intensive guidance on efficient drug development during IND • organizational commitment involving senior managers</td>
<td>• approval based on an effect on a surrogate or intermediate clinical endpoint</td>
<td>• approval based on animal efficacy studies</td>
<td>• shorter clock for review of marketing application (6 months compared to the 10-month standard review)</td>
</tr>
<tr>
<td>Attribute</td>
<td>Fast Track</td>
<td>Breakthrough Therapy</td>
<td>Accelerated Approval</td>
<td>Animal Efficacy</td>
<td>Priority Review</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Postmarket requirements</td>
<td>• submission of copies of promotional materials</td>
<td>• conduct of postapproval trials to verify and describe the anticipated clinical benefit or effect on irreversible morbidity or mortality</td>
<td>• conduct of postmarketing studies when feasible</td>
<td>• subject to distribution restrictions to ensure safe use</td>
<td>• labeling for patients that explains nature (animal studies) of the approval</td>
</tr>
</tbody>
</table>

Notes:

a. Although priority review is not explicitly required by law, FDA has established it in practice. Various statutes, such as the Prescription Drug User Fee Act (PDUFA), refer to and sometimes require it.

b. Title VIII of FDASIA entitled “Generating Antibiotic Incentives Now (GAIN)” provides incentives for the development of antibacterial and antifungal drugs for human use intended to treat serious and life threatening infections. Under GAIN, a drug may be designated as a qualified infectious disease product (QIDP) if it meets the criteria outlined in the statute. A drug that receives QIDP designation is eligible under the statute for fast track designation and priority review. However, QIDP designation is beyond the scope of this guidance.

c. Any supplement to an application under FFDCA §505 that proposes a labeling change pursuant to a report on a pediatric study under this section shall be considered to be a priority review supplement per FFDCA §505A as amended by section 5(b) of the Best Pharmaceuticals for Children Act.

d. Any application or supplement that is submitted with a priority review voucher will be assigned a priority review. Priority review vouchers will be granted to applicants of applications for drugs for the treatment or prevention of certain tropical diseases, as defined in FFDCA §524(a)(3) and (4) and for treatment of rare pediatric diseases as defined in FFDCA §529(a)(3).
How FDA Regulates Approved Drugs

FDA’s role in making sure a drug is safe and effective continues after the drug is approved and it appears on the market. FDA acts through its *postmarket regulatory procedures* after a manufacturer has sufficiently demonstrated a drug’s safety and effectiveness for a defined population and specified conditions and the drug is *FDA-approved*. Manufacturers *must* report all serious and unexpected adverse reactions to FDA, and clinicians and patients *may* do so. FDA oversees surveillance, studies, labeling changes, and information dissemination, among other tasks, as long as the drug is sold.

FDA Entities Responsible for Drug Postapproval Regulation

Offices throughout FDA, mostly in the Center for Drug Evaluation and Research, address the safety of the drug supply. The primary focus of activity is the Office of Surveillance and Epidemiology (OSE), formerly named the Office of Drug Safety. OSE uses reports of adverse events that consumers, clinicians, or manufacturers believe might be drug-related to “identify drug safety concerns and recommend actions to improve product safety and protect the public health.”

FDA activities regarding drug safety once a drug is on the market (postmarket or postapproval period) are diverse. FDA staff

- look for “signals” of safety problems of marketed drugs by reviewing adverse event reports through the MedWatch program;
- review studies conducted by manufacturers when required as a condition of approval;
- monitor relevant published literature;
- conduct studies using computerized databases;
- review errors related to similarly named drugs;
- conduct communication research on how to provide balanced benefit and risk information to clinicians and consumers; and
- remain in contact with international regulatory bodies.

Other CDER units evaluating safety issues include the Office of Prescription Drug Promotion (formerly the Division of Drug Marketing, Advertising and Communications); the Division of Drug Information; and the Office of Compliance, which has offices addressing drug security, manufacturing quality, and unapproved drugs and labeling. Outside of CDER, the Office of Regulatory Affairs (ORA) performs field activities, including domestic and foreign inspections. The FDA human drugs program budget includes funding for CDER and the CDER-related activities of ORA.

Among the many advisory groups that work with FDA, two focus specifically on drug safety. The *Drug Safety and Risk Management Advisory Committee* met for the first time with this name in

July 2002. Members, appointed by the commissioner, are nonfederal and represent areas of expertise in science, risk communication, and risk management. One member may be designated to represent consumer concerns; one non-voting member may represent industry concerns. The group “advises the Commissioner or designee in discharging responsibilities as they relate to helping to ensure safe and effective drugs for human use.”

FDA created the Drug Safety Oversight Board as part of its 2005 Drug Safety Initiative and later required by FDAAA in 2007. Its members include both FDA personnel and representatives of the Agency for Healthcare Research and Quality, the Centers for Disease Control and Prevention, the Department of Defense, the Indian Health Service, the National Institutes of Health, and the Department of Veterans Affairs. Its roles are to advise the CDER director “on the handling and communicating of important and often emerging drug safety issues” and to provide “a forum for discussion and input about how to address potential drug safety issues.”

FDA Drug-Regulation Activities

FDA postmarket drug safety and effectiveness activities address aspects of drug production, distribution, and use. This section highlights nine activities that have traditionally interested Congress in relation to drug safety and effectiveness: product integrity, labeling, reporting, surveillance, drug studies, risk management, information dissemination, off-label use, and direct-to-consumer advertising.

40 A predecessor group was the Drug Abuse Advisory Committee (http://www.fda.gov/OHRMS/DOCKETS/98fr/071102f.htm).
41 FDA, “Drug Safety and Risk Management Advisory Committee Charter,” http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskManagementAdvisoryCommittee/ucm094886.htm. Holding independent meetings as well as joint meetings with disease-focused advisory committees (e.g., the Endocrinologic and Metabolic Drugs and the Reproductive Health Drugs Advisory Committees), the Drug Safety and Risk Management Advisory Committee considered varied topics in the first half of 2013, including potential rescheduling of hydrocodone combination products from Schedule III to Schedule II of the Controlled Substances Act; “whether the benefit of calcitonin salmon for the treatment of postmenopausal osteoporosis ... outweighs a potential risk of cancer;” the efficacy and safety of a proposed intramuscular injectable testosterone product for testosterone replacement therapy; results of an independent readjudication of a drug trial evaluating cardiovascular outcomes of the diabetes drug rosiglitazone (Avandia); and the risk management of a drug marketed to treat irritable bowel syndrome, including whether the standing risk evaluation and mitigation strategy with its specified elements to assure safe use “is not unduly burdensome to patient access to the drug, and to the extent practicable, minimizes the burden to the health care delivery system” (FDA, “2013 Meeting Materials, Drug Safety and Risk Management Advisory Committee,” http://www.fda.gov/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DrugSafetyandRiskManagementAdvisoryCommittee/ucm332858.htm.
42 FDAAA §901(b) added FFDCA §505-1(j).
43 FDA, “Drug Safety Oversight Board,” http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm082129.htm. Publicly available summary minutes list the Drug Safety Communications posted since the previous meeting and topics presented to the DSOB. For the first half of 2013, these topics included the safety-based lowering of recommended doses for zolpidem-containing insomnia products (e.g., Ambien); FDA development and implementation of a risk-benefit framework and the Mini-Sentinel project; Centers for Medicare and Medicaid Services activities on drug utilization review controls, medication therapy management programs, and formulary review, all regarding Medicare Part D; biosimilars; input on FDASIA-required “communication plans on the benefits and risks of medical products to inform and educate health care providers and patients with particular focus on underrepresented populations including racial subgroups,” the FDA Drug Safety Communication Program; and REMS activities (FDA, “Drug Safety Oversight Board Meetings: Public Summaries,” http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm082136.htm).
Product Integrity

Ensuring product integrity was the key task of FDA’s predecessors in the early 1900s. Protecting the supply chain from counterfeit, diverted, subpotent, substandard, adulterated, misbranded, or expired drugs remains an essential concern of the agency. But as drug production has shifted to a global supply chain, FDA has broadened the scope of the way it monitors manufacturers, processors, packagers, importers, and distributors. The FFDCA dictates requirements that manufacturers must meet, and it allows FDA to regulate manufacturing facilities, warehouses, and transportation plans. For example, among many other requirements, the FFDCA requires (1) annual registration, including a unique facility identifier, of any domestic or foreign establishment “engaged in the manufacture, preparation, propagation, compounding, or processing of a drug or drugs” or their excipients (such as fillers, preservatives, or flavors) for U.S. distribution; (2) registration of importers; (3) submission of lists of products, including ingredients and labeling; (4) adherence to current good manufacturing practice (cGMP); (5) various inspection requirements including risk-based facility inspections, inspection of drug lots for packaging and labeling control, and “sampling and testing of in-process materials and drug products;” and (6) numerous reporting requirements, among other actions.

FDA monitors product integrity beyond the drug’s initial manufacture. It continues as the drug moves throughout the supply chain from its manufacturer to one or more wholesale distributors to the entity that dispenses it to the patient. One way to track product integrity is a chain-of-custody document, also called a pedigree, defined by an FDA official as a record of “the movement of the drug from the place of manufacture through the U.S. drug supply chain to the final dispenser.”

44 FFDCA section titles refer to “adulterated” (§501) and “misbranded” (§502) drugs.
46 Although this discussion focuses on U.S. facilities, the FFDCA includes registration and product listing requirements for foreign facilities involved with drugs FDA-approved for sale in the United States. FDA and others are looking at how the agency carries out its regulatory responsibilities in an increasingly global industry (see, for example, FDA, “Report to Committee on Appropriations: Report on FDA’s Approach to Medical Product Supply Chain Safety in response to the Joint Explanatory Statement to accompany H.R. 1105, the Omnibus Appropriations Act, 2009,” July 2009, http://www.fda.gov/downloads/Safety/SafetyofSpecificProducts/UCM184049.pdf).
47 FFDCA §510(b) and (i) [21 USC 310(b) and (i)] and 21 CFR Part 207.
48 FFDCA §801.
49 FFDCA §510(j) [21 USC 360(j)] and 21 CFR Part 207.
51 21 CFR 211.134.
52 21 CFR 211.110.
Such a document (whether paper or electronic) could allow someone to take a drug off the pharmacy shelf and determine where it was mixed and manufactured, what ships or trucks transported it, and who was responsible each time the finished product or its ingredients changed hands.

In 2010, following a FDAAA mandate, FDA developed a standardized numerical identifier to be applied to a prescription drug at the point of manufacturing and repackaging. FDA, industry groups involved in the supply chain, and House and Senate policymakers continue work to develop a uniform national system of product tracking and tracing. Issues under discussion include, for example, definitions; pedigrees; track-and-trace technologies; serialization; lot- and unit-level requirements; authentication; interoperable data collection and systems; data confidentiality and access; requirements for transaction reporting and notification regarding suspect deliveries; implementation timing; licensure, registration, and accreditation standards for entities in the supply chain; accountability; cost; and the relationship between federal and state laws.

Another instance of federal and state interest is the practice of drug compounding. While FDA regulates drug manufacturers, each state regulates pharmacies and pharmacists. The regulation of compounding pharmacies—where a pharmacist compounds (mixes) ingredients to create a product that differs from an FDA-approved drug based on a prescription for a specific patient—is a state function. However, some businesses licensed as pharmacies are compounding large amounts of a drug without corresponding patient-specific prescriptions and then selling the drug out of state. In 2012, long-term concern about the practice came to the forefront with an epidemic of fungal meningitis that CDC and FDA have traced back to a compounding business. Members of Congress, FDA, and various stakeholders are discussing approaches to ensure product safety.

Reporting and Surveillance

One way FDA monitors the safety of approved drugs involves gathering information about possible adverse reactions to the products it has approved for U.S. use. Manufacturers must report all serious and unexpected adverse events (AEs) to the FDA Adverse Event Reporting System (FAERS) within 15 days of becoming aware of them. Health professionals and patients may report adverse events to FDA’s MedWatch reporting system at any time.

54 Throughout the FFDCA, Congress directs the HHS Secretary to take certain actions. In general, the Secretary delegates responsibility for carrying out such actions to the Food and Drug Administration via the Commissioner of Food and Drugs.

56 For more detail on this issue, see CRS Report R43106, *Pharmaceutical Supply Chain Security*, by (name redacted). (In the 113th Congress, see H.R. 1919 and S. 959.)

57 See CRS Report R43038, *Federal Authority to Regulate the Compounding of Human Drugs*, by (name redacted). (In the 113th Congress, see S. 959, H.R. 2186, H.R. 3019, and H.R. 3089.)

58 Before 2012, FAERS had been called AERS.

59 21 CFR 314.80 (for approved drugs) and 21 CFR 310.305 (for drugs without approved NDAs). A manufacturer must also report the results of clinical studies it conducts on its approved products, along with what it knows about others’ research and publications (FFDCA §505(k)).
The agency collects those AE reports through MedWatch and uses the FAERS database[^60] to store and analyze them. Not all AEs may be actual drug reactions[^64]. Using large surveillance data sets such as FAERS and with an understanding of the pharmacologic and pharmacokinetic functioning of various drugs, FDA scientists review the reported AEs to assess which ones may indicate a drug problem. They then use information gleaned from the surveillance data to determine a course of action. FDA might recommend a change in drug labeling to alert users to a potential problem or, perhaps, require the manufacturer to study the observed association between the drug and the adverse event.

Unlike planned studies with hypotheses to support or refute, for which researchers gather information, most surveillance activities are characterized as passive[^62], in that the information is submitted by others. The agency only learns of an adverse event when someone reports it. There are limitations to that approach. The reported event may signal a problem with the drug or be unrelated but have occurred coincident with the dosing. Other actual drug effects may be unrecognized as such and consequently not be reported. In addition, it is difficult to interpret the extent of a problem without knowing how many people took a specific drug.

In 2008, FDA began work on its Sentinel Initiative, both recognizing these limitations and responding to a requirement in FDAAA to create and maintain a Postmarket Risk Identification and Analysis System[^63]. With this, FDA is moving from its predominantly passive surveillance system to an active one. Building on surveillance activities already in place, and using evolving computer technology, FDA is developing an infrastructure that uses data from public and private sources, protects confidentiality, and expands its information base[^64]. A pilot Mini-Sentinel has identified adverse event patterns that FDA has addressed[^65].

[^61]: An event may occur after the use of a drug for reasons entirely unrelated to the drug. For example, an individual takes a blood pressure medication just before boarding a commuter train that later crashes leaving the passenger with a broken arm. The broken arm happened immediately after taking the drug but is unrelated. If, however, the train driver had taken the medication and then crashed the train, analysts could, with more information, pursue whether the drug was implicated.
[^62]: CDC has described four types of surveillance methods, with the passive method’s being predominant. “The term passive is used to convey the idea that health authorities take no action while waiting for report forms to be submitted” (CDC, “Methods of Surveillance” in “Program Operations Guidelines for STD Prevention: Surveillance and Data Management,” http://www.cdc.gov/std/program/Surveillance.pdf).
[^63]: FDAAA §905(a) amended FFDCA §505(k) to require the Secretary to, among other things, “use electronic health data for risk identification and analysis; provide standardized reporting of adverse event data; and use federal, private, and other data sources to conduct active adverse event surveillance and identify trends and patterns.” A fuller description is in CRS Report RL34465, *FDA Amendments Act of 2007 (P.L. 110-85)*, by (name redacted).
[^65]: Statement of Margaret A. Hamburg, M.D., Commissioner of Food and Drugs, Food and Drug Administration, Department of Health and Human Services, before the Committee on Appropriations, Subcommittee on Agriculture, Rural Development, Food and Drug Administration, and Related Agencies, U.S. Senate, “President’s Fiscal Year 2014 Budget Request for the FDA,” April 18, 2013, http://www.fda.gov/NewsEvents/Testimony/ucm351796.htm. For example, data on more than one million vaccinations against rotavirus gastroenteritis in infants showed increased risk of a complication (intussusception) mostly in the first week after a first dose and no increased risk after subsequent (continued...)}
Drug Studies

After a drug is on the market, FDA can recommend and ask product sponsors to conduct studies. In only limited situations (as described below) does the law authorize FDA to require studies in the postapproval period. Two sets of situations—distinguished by when the requirement is set—involve required postapproval studies: when a requirement is attached to the initial approval of the drug and when FDA informs the sponsor of a required study once a drug is on the market.

Postmarket Studies Required upon Drug Approval

Accelerated Approval. When FDA grants accelerated approval, it attaches a postmarket study requirement to that approval. Regulations state, “Approval under this section will be subject to the requirement that the applicant study the drug further, to verify and describe its clinical benefit, where there is uncertainty as to the relation of the surrogate endpoint to clinical benefit, or of the observed clinical benefit to ultimate outcome.”

Animal Efficacy. When FDA grants approval based on its animal efficacy rule, it attaches a postmarket study requirement to that approval. The Animal Efficacy Rule allows manufacturers to submit effectiveness data from animal studies as evidence to support applications of certain new products “when adequate and well-controlled clinical studies in humans cannot be ethically conducted and field efficacy studies are not feasible.” The regulations state,

The applicant must conduct postmarketing studies, such as field studies, to verify and describe the drug’s clinical benefit and to assess its safety when used as indicated when such studies are feasible and ethical. Such postmarketing studies would not be feasible until an exigency arises.... Applicants must include as part of their application a plan or approach to postmarketing study commitments in the event such studies become ethical and feasible."

Pediatric Assessments. When FDA approves a drug for which it has deferred the required pediatric assessment, it attaches a postmarket pediatric assessment requirement to that approval. With the Pediatric Research Equity Act (PREA, first authorized in P.L. 108-155), Congress required manufacturers to submit a pediatric assessment with each submission of an application to market a new active ingredient, new indication, new dosage form, new dosing regimen, or new route of administration. The law specified situations in which the Secretary might defer or waive the pediatric assessment requirement. For a deferral, an applicant must include a timeline...
for completion of studies. The Secretary must review each approved deferral annually, for which the applicant must submit evidence of documentation of study progress.

Postmarket Studies Required After Drug Approval

Pediatric Assessment. In addition to the pediatric assessment required as part of a drug’s approval, PREA allows the Secretary, in certain circumstances, to require a pediatric assessment of a drug already on the market.70

Based on New Information Available to Secretary. The Secretary, under specified conditions after a drug is on the market, may require a study or a clinical trial.71 The Secretary may determine the need for such a study or trial based on newly acquired information. To require a postapproval study or trial, the Secretary must determine that (1) other reports or surveillance would not be adequate and (2) the study or trial would assess a known serious risk or signals of serious risk, or identify a serious risk. The law directs the Secretary regarding dispute resolution procedures.

Risk Management

With authority under the FFDCA or by its own practices, FDA has long implemented various tools in its attempt to ensure that the drugs it has approved for marketing in the United States are safe and effective for their intended and approved uses. In addition to the actions the agency requires of the manufacturers of all approved drugs, it may deem additional actions appropriate for specific drugs or specific circumstances surrounding a drug’s use. Some of those additional actions are risk-management processes to identify and minimize risk to patients. The FDA Manual of Policies and Procedures notes that risk management attempts to “minimize [a drug’s] risks while preserving its benefits.”72 In that 2005 document, FDA described its approach to risk management as “an iterative process” that includes both risk assessment and risk minimization.

The Food and Drug Administration Amendments Act of 2007 (FDAAA, P.L. 110-85) named the risk-management process risk evaluation and mitigation strategies (REMS) and expanded the risk-management authority of FDA.73 FDA practice has long included most of the elements that a REMS may include. FDAAA gave FDA, through the REMS process, the authority for structured follow-through, dispute resolution, and enforcement.74

70 FFDCA §505B [21 USC 355c].
71 These provisions are in FFDCA §505(o) [21 USC 355(o)] New Drugs; Postmarket studies and clinical trials; labeling.
73 The REMS authority is in FFDCA §505-1 [21 USC 355-1]. REMS are discussed CRS Report RL34465, FDA Amendments Act of 2007 (P.L. 110-85), by (name redacted), pages 68-78, including Tables 12 and 13.
FDA may require a REMS under specified conditions—including if it determines such a strategy is necessary to ensure that the benefits of a drug outweigh its risks. It may make the requirement when a manufacturer submits a new drug application, after initial approval or licensing, when a manufacturer presents a new indication or other change, or when the agency becomes aware of new information and determines a REMS is necessary.75

As part of a REMS, the Secretary may require instructions to patients and clinicians, and restrictions on distribution or use (and a system to monitor their implementation). As listed in FFDCA Section 505-1 [21 USC 355-1], a REMS may include the following components:

Patient information. The manufacturer must develop material “for distribution to each patient when the drug is dispensed.”76 This could be a Medication Guide, “as provided for under part 208 of title 21, Code of Federal Regulations (or any successor regulations),”77 or a patient package insert.78

Health care provider information. The manufacturer must create a communication plan, which could include sending letters to health care providers; disseminate information to providers about REMS elements to encourage implementation or explain safety protocols; or disseminate information through professional societies about any serious risks of the drug and any protocol to assure safe use.

Elements to assure safe use (ETASU). An ETASU is a restriction on distribution or use that is intended to (1) allow access to those who could benefit from the drug while minimizing their risk of adverse events and (2) block access to those for whom the potential harm would outweigh potential benefit. By including these restrictions, FDA can approve a drug that it otherwise would have to keep off the market because of the risk it would pose. FFDCA Section 505-1(f)(3) lists the types of restrictions FDA could require as

(...continued)

75 As of June 26, 2013, FDA had established 201 REMS (of which 65 were active; see footnote 78) for individual drugs and 6 shared system REMS, which cover all drugs in a defined class. These are listed in FDA, “Approved Risk Evaluation and Mitigation Strategies (REMS),” http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm11350.htm. In addition to drug-specific individual REMS, FFDCA §505-1 authorizes FDA to require a REMS for all the drugs in a pharmacological class and sets out required steps that include public meetings (which could include the product sponsors, advisory committees, expert workshops, etc.), announcement in the *Federal Register* of planned regulatory action, and public comment. FDA has completed this process for a class-wide REMS for long-acting and extended-release opioid products (FDA, “Opioid Drugs and Risk Evaluation and Mitigation Strategy (REMS),” http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm163647.htm; and FDA, “Questions and Answers: FDA Requires a Risk Evaluation and Mitigation Strategy (REMS) for Long-Acting and Extended-Release Opioids,” http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm251752.htm).

76 FFDCA §505-1(e)(2).

77 FFDCA §505-1(e)(2)(A).

• health care providers who prescribe must have particular training or experience, or be specially certified;

• pharmacies, practitioners, or health care settings that dispense must be specially certified;

• the drug must be dispensed to patients only in certain health care settings, such as hospitals;

• the drug must be dispensed to patients with evidence or other documentation of safe-use conditions, such as laboratory test results;

• each patient using the drug must be subject to certain monitoring; and

• each patient using the drug must be enrolled in a registry.

Any approved REMS must include a timetable of when the manufacturer will provide reports to allow FDA to assess the effectiveness of the REMS components.

Information Dissemination

FDA maintains several communications channels through which it distributes information on drug safety and effectiveness to clinicians, consumers, pharmacists, and the general public. An FDA webpage titled “Postmarket Drug Safety Information for Patients and Providers” includes links to drug-specific information, potential signals of serious risks and summary statistics from FAERS, Drug Safety Communications, and FDA Drug Safety Podcasts. Other channels include FDA Drug Info Rounds and FDA Drug Information on Twitter.

FDAAA, in 2007, required FDA to take a several actions regarding how it informs the public, expert committees, and others about agency actions and plans and information the agency has developed or gathered about drug safety and effectiveness. Among other things, the law required

• the establishment of an Advisory Committee on Risk Communication to “advise the Commissioner on methods to effectively communicate risks associated with” FDA-regulated products;

79 FDA presents quarterly summaries of FAERS data on its website (FDA, “FDA Adverse Event Reporting System (FAERS) Statistics,” http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm070093.htm). The agency also makes raw adverse event data available to the public, although it notes that “[U]sers of these files need to be familiar with creation of relational databases using applications such as ORACLE®, Microsoft Office Access, MySQL® and IBM DB2 or the use of ASCII files with SAS® analytic tools. ... A simple search of AERS/FAERS data cannot be performed with these files by persons who are not familiar with creation of relational databases” (FDA, “FDA Adverse Event Reporting System (FAERS): Latest Quarterly Data Files,” http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm).

a report to Congress that must address how best to communicate risks and benefits of new drugs to the public and “the role of the risk evaluation and mitigation strategy in assessing such risks and benefits;”

inclusion in any published direct-to-consumer prescription drug advertisement a statement encouraging the reporting of negative side effects to FDA, along with a 1-800 number and website address;

biweekly screening of the FAERS database and quarterly reporting on the FAERS website regarding new safety information or potential signals of a serious risk;

a report to Congress on procedures for addressing ongoing postmarket safety issues identified by the Office of Surveillance and Epidemiology;

the development and maintenance of a website with extensive drug safety information, and publication of a list of all authorized generic drugs; and

public access to action packages for product approval or licensure, including certain reviews.

Labeling

What Is Labeling?

A drug’s labeling is more than the sticker the pharmacy places on the amber vial it dispenses to a customer. FFDCA Section 201(m) defines labeling to include “… all labels and other written, printed, or graphic matter … accompanying” the drug. FDA regulations on labeling dictate the

85 FDA describes an action package as “A compilation of (1) FDA-generated documents related to review of an NDA or efficacy supplement (i.e., from submission to final action), (2) documents (e.g., meeting minutes, pharmacology reviews) pertaining to the format and content of the application generated during drug development (investigational new drug (IND)), and (3) labeling submitted by the applicant” (FDA, “Action Packages for NDAs and Efficacy Supplements,” MAPP 6020.8, CDER Manual of Policies and Procedures, November 13, 2002, http://www.fda.gov/downloads/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ManualofPoliciesProcedures/ucm082010.pdf).

86 21 CFR Part 201—Labeling.
material the labeling must provide along with required formatting. 87 FDA included the following description when it issued its 2006 final rule on labeling: 88

> A prescription drug product’s FDA approved labeling (also known as “professional labeling,” “package insert,” “direction circular,” or “package circular”) is a compilation of information about the product, approved by FDA, based on the agency’s thorough analysis of the new drug application (NDA) or biologics license application (BLA) submitted by the applicant. This labeling contains information necessary for safe and effective use. It is written for the health care practitioner audience, because prescription drugs require “professional supervision of a practitioner licensed by law to administer such drug” (section 503(b) of the act (21 U.S.C. 353(b))).

FDA regulations on prescription drug advertising refer to examples of labeling: 89

> Brochures, booklets, mailing pieces, detailing pieces, file cards, bulletins, calendars, price lists, catalogs, house organs, letters, motion picture films, film strips, lantern slides, sound recordings, exhibits, literature, and reprints and similar pieces of printed, audio or visual matter descriptive of a drug and references published (for example, the Physician’s Desk Reference) for use by medical practitioners, pharmacists, or nurses, containing drug information supplied by the manufacturer, packer, or distributor of the drug and which are disseminated by or on behalf of its manufacturer, packer, or distributor are hereby determined to be labeling as defined in section 201(m) of the FD&C Act.

FDA requires that labeling begin with a highlights section that includes, if appropriate, black-box warnings, so called because they are bordered in black to signify their importance. 90 The regulations list the required elements of labeling: indications and usage, dosage and administration, dosage forms and strengths, contraindications, warnings and precautions, adverse reactions, drug interactions, use in specific populations, drug abuse and dependence, overdosage, clinical pharmacology, nonclinical toxicology, clinical studies, references, how supplied/storage and handling, and patient counseling information. 91

How Is Labeling Used?

Labeling plays a major role in the presentation of safety and effectiveness information. It is a primary source of prescribing information used by clinicians. The manufacturer submits labeling for printing in the widely used *Physician’s Desk Reference* and is the basis of several patient-
When and How May Labeling Be Changed?

Adverse events sometimes warrant regulatory actions such as labeling changes, letters to health professionals, or, once in a great while, a drug’s withdrawal from the market. The regulations refer to required labeling revisions as soon as there is reasonable evidence—not proof—of a causal association with a clinically significant hazard.96

FDA can request labeling changes based on information it gathers from mandatory industry reports to FAERS, manufacturer-submitted postmarket studies, and voluntary adverse event reports from clinicians and patients.97 The agency may, upon learning of new relevant safety information, require a labeling change.98

When a manufacturer of an innovator (brand-name) drug believes data from original or published studies support a new use for a drug, a manufacturer itself can initiate a label change to support a new marketing claim.99 The manufacturer can submit to FDA the new data in a supplement to the

95 For a discussion about the legal implications of drug labeling, see CRS Report R43218, Preemption of Drug and Medical Device Claims: A Legal Overview, by (name redacted) and (name redacted).

96 21 CFR 201.57(c)(6). Other regulations affect whether the manufacturer must get approval from FDA before making a labeling change (e.g., 21 CFR 314.70).

98 FDCA §505(o), added by FDAAA, allows the Secretary, upon learning of new relevant safety information, to require that the sponsor submit a supplement for a labeling change. It includes procedures, including time limits, for notification, review, dispute resolution, and violation; it also authorizes the Secretary to accelerate timelines if the Secretary concludes that the labeling change is necessary to protect the public health.

original NDA (sNDA) and request that FDA allow it to modify the labeling. In addition, if a manufacturer of an innovator drug submits an sNDA to strengthen warning labeling, regulations describe when the change can be made prior to FDA approval.100

The FFDCA requires that a generic drug have the same labeling as the innovator drug on which its application draws.101 This requirement has implications when an injured party seeks to sue the generic manufacturer102 and when new safety information becomes available when only generic products remain on the market.103

Off-Label Use

As described earlier, FDA approves a drug for U.S. sale based on its manufacturer’s new drug application (NDA), which contains evidence of safety and effectiveness in its intended use, manufacturing requirements, and labeling. Despite the indications for use in the approved labeling, a licensed physician may—except in highly regulated circumstances104—prescribe the approved drug without restriction. A prescription to an individual whose demographic or medical characteristics differ from those indicated in a drug’s FDA-approved labeling is called *off-label use* and is accepted medical practice.105 The FFDCA prohibits a manufacturer from selling a misbranded product, and deems a drug to be misbranded if its labeling is false or misleading.106 FDA has interpreted the FFDCA, therefore, to prohibit a manufacturer from promoting or advertising a drug for any use not listed in the FDA-approved labeling, which contains those claims for which FDA has reviewed safety and effectiveness evidence.107 However, FDA’s interpretation has been challenged and is in dispute.108

101 FFDCA §505(j)(2)(A)(v); and 21 CFR 314.94(a)(8).

102 CRS Report R43218, *Preemption of Drug and Medical Device Claims: A Legal Overview*, by (name redacted) and (name redacted).

104 FDA may place restrictions on prescribing or dispensing as “elements to assure safe use” (ETASU) as part of a risk evaluation and mitigation strategy (REMS) that the agency may require (see FFDCA §505-1(f)).

105 The FFDCA does not give FDA authority to regulate the practice of medicine; that responsibility rests with the states and medical professional associations.

106 FFDCA §502(a).

107 Materials from FDA’s Bad Ad Program describe elements of false or misleading ads. These include promotion of an unapproved use. See FDA, “Truthful Prescription Drug Advertising and Promotion,” Page Last Updated: 11/27/2012, http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/DrugMarketingAdvertisingandCommunications/ucm209384.htm#ExamplesofViolations. See also FFDCA §§ 301 and 502(a).

Examples of Off-Label Use

- A drug tested for the treatment of one disease may be prescribed in an attempt to prevent or treat another.
- If a drug was tested at one dose, it may be used at higher or lower doses.
- A drug tested in adults may be prescribed to children.
- A drug that was tested in an eight-week trial may be prescribed for long-term use.

Off-label use presents an evaluation problem to FDA safety reviewers. Using drugs in new ways for which researchers have not yet demonstrated safety and effectiveness can create problems that premarket studies did not address. Manufacturers rarely design studies to establish the safety and effectiveness of their drugs in off-label uses, and individuals and groups wanting to conduct such studies face difficulties finding funding.

Direct-to-Consumer Advertising

FDA regulates the advertising of prescription drugs. Although the Federal Trade Commission regulates nonprescription drug advertising, the FDA regulates the product labeling that the nonprescription drug ads must reflect. FDAAA expanded and strengthened FDA’s enforcement tools regarding advertising. The agency may now require submission of a television advertisement for review before its dissemination. Based on this review, during which FDA may consider the impact the drug might have on specific population groups (such as older and younger individuals, or racial and ethnic minorities), the agency may recommend, but not require, changes in the ad. The law authorizes FDA to require that an ad include certain disclosures without which it determines that the ad would be false or misleading. These disclosures could include the date of drug’s approval as well as information about a serious risk listed in a drug’s labeling.

Television and radio ads must present the required information on side effects and contraindications in a “clear, conspicuous, and neutral manner.” Civil penalties are authorized for the dissemination of a false or misleading direct-to-consumer (DTC) advertisement. Any published DTC advertisement must include the following statement printed in conspicuous text: “You are encouraged to report negative side effects of prescription drugs to the FDA. Visit http://www.fda.gov/medwatch, or call 1-800-FDA-1088.”

109 FFDCA §502(n). For an indepth discussion of this issue, see CRS Report R40590, Direct-to-Consumer Advertising of Prescription Drugs, by (name redacted).

110 FFDCA §502(n) as amended by FDAAA §901(d)(3).

111 FFDCA §502(n) as amended by FDAAA §906(a).
Appendix. Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERS</td>
<td>Adverse Event Reporting System, now FAERS</td>
</tr>
<tr>
<td>ANDA</td>
<td>abbreviated new drug application</td>
</tr>
<tr>
<td>BLA</td>
<td>biologics license application</td>
</tr>
<tr>
<td>BPCA</td>
<td>Best Pharmaceuticals for Children Act</td>
</tr>
<tr>
<td>CBER</td>
<td>Center for Biologics Evaluation and Research</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CDER</td>
<td>Center for Drug Evaluation and Research</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>DTC</td>
<td>direct-to-consumer, as in advertising</td>
</tr>
<tr>
<td>ETASU</td>
<td>elements to assure safe use, as in REMS</td>
</tr>
<tr>
<td>FAERS</td>
<td>FDA Adverse Event Reporting System, formerly AERS</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FDAAA</td>
<td>Food and Drug Administration Amendments Act, 2007</td>
</tr>
<tr>
<td>FDAMA</td>
<td>Food and Drug Administration Modernization Act, 1998</td>
</tr>
<tr>
<td>FDASIA</td>
<td>Food and Drug Administration Safety and Innovation Act, 2012</td>
</tr>
<tr>
<td>FFDCA</td>
<td>Federal Food, Drug, and Cosmetic Act</td>
</tr>
<tr>
<td>GAIN</td>
<td>Generating Antibiotic Incentives Now Act</td>
</tr>
<tr>
<td>GDUFA</td>
<td>Generic Drug User Fee Amendments</td>
</tr>
<tr>
<td>IND</td>
<td>investigational new drug</td>
</tr>
<tr>
<td>MAPP</td>
<td>Manual of Policies and Procedures</td>
</tr>
<tr>
<td>NDA</td>
<td>new drug application</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institutes of Health</td>
</tr>
<tr>
<td>OPDP</td>
<td>Office of Prescription Drug Promotion</td>
</tr>
<tr>
<td>ORA</td>
<td>Office of Regulatory Affairs</td>
</tr>
<tr>
<td>OSE</td>
<td>Office of Surveillance and Epidemiology, formerly Office of Drug Safety</td>
</tr>
<tr>
<td>PAHPRA</td>
<td>Pandemic and All-Hazards Preparedness Reauthorization Act</td>
</tr>
<tr>
<td>PDUFA</td>
<td>Prescription Drug User Fee Act or Amendments</td>
</tr>
<tr>
<td>PREA</td>
<td>Pediatric Research Equity Act</td>
</tr>
<tr>
<td>QIDP</td>
<td>qualified infectious disease product</td>
</tr>
<tr>
<td>REMS</td>
<td>risk evaluation and mitigation strategy</td>
</tr>
<tr>
<td>sNDA</td>
<td>supplemental new drug application</td>
</tr>
<tr>
<td>SOPP</td>
<td>Standard Operating Procedures and Policies</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
</tbody>
</table>
Author Contact Information

(name redacted)
Specialist in Drug Safety and Effectiveness
[redacted]@crs.loc.gov, 7-....
The Congressional Research Service (CRS) is a federal legislative branch agency, housed inside the Library of Congress, charged with providing the United States Congress non-partisan advice on issues that may come before Congress.

EveryCRSReport.com republishes CRS reports that are available to all Congressional staff. The reports are not classified, and Members of Congress routinely make individual reports available to the public.

Prior to our republication, we redacted names, phone numbers and email addresses of analysts who produced the reports. We also added this page to the report. We have not intentionally made any other changes to any report published on EveryCRSReport.com.

CRS reports, as a work of the United States government, are not subject to copyright protection in the United States. Any CRS report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS report may include copyrighted images or material from a third party, you may need to obtain permission of the copyright holder if you wish to copy or otherwise use copyrighted material.

Information in a CRS report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to members of Congress in connection with CRS' institutional role.

EveryCRSReport.com is not a government website and is not affiliated with CRS. We do not claim copyright on any CRS report we have republished.