Technology Transfer: Use of Federally Funded 
Research and Development 
Wendy H. Schacht 
Specialist in Science and Technology Policy 
December 7, 2010 
Congressional Research Service
7-5700 
www.crs.gov 
RL33527 
CRS Report for Congress
P
  repared for Members and Committees of Congress        
Technology Transfer: Use of Federally Funded Research and Development 
 
Summary 
The federal government spends approximately one third of its annual research and development 
(R&D) budget for intramural work to meet mission requirements in over 700 government 
laboratories (including Federally Funded Research and Development Centers). The technology 
and expertise generated by this endeavor may have application beyond the immediate goals or 
intent of federally funded R&D. These applications can result from technology transfer, a process 
by which technology developed in one organization, in one area, or for one purpose is applied in 
another organization, in another area, or for another purpose. It is a way for the results of the 
federal R&D enterprise to be used to meet other national needs, including the economic growth 
that flows from new commercialization in the private sector; the government’s requirements for 
products and processes to operate effectively and efficiently; and the demand for increased goods 
and services at the state and local level. 
Congress has established a system to facilitate the transfer of technology to the private sector and 
to state and local governments. Despite this, use of federal R&D results has remained restrained, 
although there has been a significant increase in private sector interest and activities over the past 
several years. Critics argue that working with the agencies and laboratories continues to be 
difficult and time-consuming. Proponents of the current effort assert that while the laboratories 
are open to interested parties, the industrial community is making little effort to use them. At the 
same time, State governments are increasingly involved in the process. At issue is whether 
incentives for technology transfer remain necessary, if additional legislative initiatives are needed 
to encourage increased technology transfer, or if the responsibility to use the available resources 
now rests with the private sector. 
 
Congressional Research Service 
Technology Transfer: Use of Federally Funded Research and Development 
 
Contents 
Background and Analysis ............................................................................................................ 1 
Technology Transfer to Private Sector: Federal Interest ............................................................... 2 
Technology Transfer to State and Local Governments: Rationale for Federal Activity.................. 3 
Current Federal Efforts to Promote Technology Transfer ............................................................. 3 
Federal Laboratory Consortium for Technology Transfer....................................................... 4 
P.L. 96-480, P.L. 99-502, and Amendments ........................................................................... 4 
P.L. 100-418, Omnibus Trade and Competitiveness Act ......................................................... 6 
Patents .................................................................................................................................. 9 
Small Business Technology Transfer Program ..................................................................... 11 
Further Considerations .............................................................................................................. 11 
 
Contacts 
Author Contact Information ...................................................................................................... 12 
 
Congressional Research Service 
Technology Transfer: Use of Federally Funded Research and Development 
 
Background and Analysis 
The federal government is estimated to have spent $147.4 billion in FY2010 on research and 
development (not including funds allocated under the American Recovery and Reinvestment Act) 
to meet the mission requirements of the federal departments and agencies.1 Approximately one-
third of this is for intramural research and development (R&D) by federal laboratories (including 
support for Federally Funded Research and Development Centers). While the major portion of 
this activity has been in the defense arena, government R&D has led to new products and 
processes for the commercial marketplace including, but not limited to, antibiotics, plastics, 
airplanes, computers, microwaves, and bioengineered drugs. Given the increasing competitive 
pressures on U.S. firms in the international marketplace, proponents of technology transfer argue 
that there are many other technologies and techniques generated in the federal laboratory system 
which could have market value if further developed by the industrial community. Similarly, the 
knowledge base created by the agencies’ R&D activities can serve as a foundation for additional 
commercially relevant efforts in the private sector. 
The movement of technology from the federal laboratories to industry and to state and local 
governments is achieved through technology transfer. Technology transfer is a process by which 
technology developed in one organization, in one area, or for one purpose is applied in another 
organization, in another area, or for another purpose. In the defense arena it is often called “spin-
off.” Technology transfer can have different meanings in different situations. In some instances, it 
refers to the transfer of legal rights, such as the assignment of patent title to a contractor or the 
licensing of a government-owned patent to a private firm. In other cases, the transfer endeavor 
involves the informal movement of information, knowledge, and skills through person-to-person 
interaction. The crucial aspect in a successful transfer is the actual use of the product or process. 
Without this, the benefits from more efficient and effective provision of goods and services are 
not achieved. However, while the United States has perhaps the best basic research enterprise in 
the world—as evidenced in part by the large number of Nobel Prizes awarded to American 
scientists—other countries sometimes appear more adept at taking the results of this effort and 
making commercially viable products to be sold in U.S. and world markets.2  
Despite the potential offered by the resources of the federal laboratory system, the 
commercialization level of the results of federally funded research and development remained 
low through the 1970s and 1980s. Studies indicated that only approximately 10% of federally 
owned patents were ever used. There were various reasons for this, including the fact that many 
of these technologies and patents had no commercial application. A major factor in successful 
transfer is a perceived market need for the technology or technique. However, because federal 
laboratory R&D is generally undertaken to meet an agency’s mission or because there are 
insufficient incentives for private sector research that the government deems in the national 
interest, decisions reflect public sector, rather than commercial needs. Thus, transfer often 
depends on attempts to ascertain commercial applications of technologies developed for 
government use—“technology push”—rather than on “market pull.” In other words, a technology 
is developed and a use for it established because the expertise exists rather than because it is 
perceived to be needed. 
                                                
1 CRS Report RL34448, Federal Research and Development Funding: FY2009, coordinated by John F. Sargent Jr. 
2 See CRS Report RL33528, Industrial Competitiveness and Technological Advancement: Debate Over Government 
Policy, by Wendy H. Schacht. 
Congressional Research Service 
1 
Technology Transfer: Use of Federally Funded Research and Development 
 
Additional barriers to transfer involve costs. Studies have estimated that research accounts for 
approximately 25% of expenditures associated with bringing a new product or process to market. 
Thus, while it might be advantageous for companies to rely on government-funded research, there 
are still significant added costs of commercialization after the transfer of technology has 
occurred. However, industry unfamiliarity with these technologies, the “not invented here” 
syndrome, and ambiguities associated with obtaining title to or exclusive license for federally 
owned patents also contribute to a limited level of commercialization. Complicating the issue is 
the fact that the transfer of technology is a complex process that involves many stages and 
variables. Often the participants do not know or understand each other’s work environment, 
procedures, terminology, rewards, and constraints. The transfer of technology appears to be most 
successful when it involves one-to-one interaction between committed individuals in the 
laboratory and in industry or state and local government. “Champions” are generally necessary to 
see a transfer through to completion because it is so often a time- and energy-consuming process. 
Given this, technology transfer is best approached on a case-by-case basis that can take into 
account the needs, operating methods, and constraints of the involved parties. 
Technology Transfer to Private Sector: Federal 
Interest 
The federal interest in the transfer of technology from government laboratories to the private 
sector is based on several factors. The government requires certain goods and services to operate. 
Much of the research it funds is directed at developing the knowledge and expertise necessary to 
formulate these products and processes. However, the government has neither the mandate nor 
the capability to commercialize the results of the federal R&D effort. Technology transfer is a 
mechanism to get federally generated technology and technical know-how to the business 
community where it can be developed, commercialized, and made available for use by the public 
sector. 
Federal involvement in technology transfer also arises from an interest in promoting the 
economic growth that is vital to the nation’s welfare and security. It is through further 
development, refinement, and marketing that the results of research become diffused throughout 
the economy and can generate growth. It is widely accepted that technological progress is 
responsible for up to one-half the growth of the U.S. economy and is the principal driving force in 
long-term economic growth and increases in our standard of living. Economic benefits of a 
technology or technique accrue when a product, process, or service is brought to the marketplace 
where it can be sold or used to increase productivity. When technology transfer is successful, new 
and different products or processes become available to meet or induce market demand. Transfer 
from the federal laboratories can result in substantial increases in employment and income 
generated at the firm level. 
In addition, cooperation with the private sector provides a means for federal scientists and 
engineers to obtain state-of-the-art technical information from the industrial community, which in 
various instances is more advanced than that available in the government. Technology transfer is 
also a way to assist companies that have been dependent on defense contracts and procurement to 
convert to manufacturing for the civilian, commercial marketplace. Successful efforts range from 
advances in the commercial aviation industry, to the development of a new technology for use in 
advanced ceramics, to the evolution of the biotechnology sector. 
Congressional Research Service 
2 
Technology Transfer: Use of Federally Funded Research and Development 
 
Technology Transfer to State and Local 
Governments: Rationale for Federal Activity 
The increasing demands on state and local governments to provide improved goods and services 
have been accompanied by a recognition that expanded technological expertise can help meet 
many of these needs. The transfer of technology and technical knowledge from government 
laboratories to state and local jurisdictions can allow for additional use of ideas and inventions 
that have been funded and created through federal R&D. Intergovernmental technology transfer 
can also help state and local officials meet responsibilities imposed by federal legislation. 
As state and local governments increasingly look for technological solutions, the concept of 
“public technology”—the adaptation and utilization of new or existing technology to public 
sector needs—has emerged. The application of technology to state and local services is a complex 
and intricate procedure. In transferring technology from the federal laboratories, the application 
often can be direct. At other times, alterations in technical products and processes may be 
necessary for application in the state and local environment. However, this “adaptive 
engineering” generally is not extensive or expensive and can be accomplished by federal 
laboratory and state and local personnel working together. 
State and local government concerns with regional economic growth also have focused attention 
on technology transfer as a mechanism to increase private sector innovation related activities 
within their jurisdiction. In order to develop and foster an entrepreneurial climate, many states 
and localities are undertaking the support of programs that assist high technology businesses, and 
that often use the federal laboratory system. State and local efforts to develop “incubator centers” 
for small companies may rely on cooperation with federal laboratories, which supply technical 
expertise to firms locating at the center. Other larger programs to promote innovation in the state, 
such as the Ben Franklin Partnership in Pennsylvania, use the science and technology resources 
of federal personnel. Additional programs have been created involving state universities, private 
companies, and the federal laboratories, with each program geared to the specific needs and 
desires of the participating parties. (For more discussion see CRS Report 98-859, State 
Technology Development Strategies: The Role of High Tech Clusters, by Wendy H. Schacht.) 
Current Federal Efforts to Promote Technology 
Transfer 
Over the years, several federal efforts have been undertaken to promote the transfer of technology 
from the federal government to state and local jurisdictions and to the private sector. The primary 
law affording access to the federal laboratory system is P.L. 96-480, the Stevenson-Wydler 
Technology Innovation Act of 1980, as amended by the Federal Technology Transfer Act of 1986 
(P.L. 99-502), the Omnibus Trade and Competitiveness Act (P.L. 101-418), the 1990 Department 
of Defense (DOD) Authorization Act (P.L. 101-189), the National Defense Authorization Act for 
FY1991 (P.L. 101-510), the Technology Transfer Improvements and Advancement Act (P.L. 104-
113), and the Technology Transfer Commercialization Act (P.L. 106-404). Several practices have 
been established and laws enacted that are aimed at encouraging the private sector to utilize the 
knowledge and technologies generated by the federal R&D endeavor. These are discussed below. 
Congressional Research Service 
3 
Technology Transfer: Use of Federally Funded Research and Development 
 
Federal Laboratory Consortium for Technology Transfer 
One of the primary federal efforts to facilitate and coordinate the transfer of technology among 
various levels of government and to the private sector is the Federal Laboratory Consortium for 
Technology Transfer (FLC). The Consortium was originally established under the auspices of the 
Department of Defense in the early 1970s to assist in transferring DOD technology to state and 
local governments. Several years later, it was expanded to include other federal departments in a 
voluntary organization of approximately 300 federal laboratories. The Federal Technology 
Transfer Act of 1986 (P.L. 99-502) provided the FLC with a legislative mandate to operate and 
required the membership of most federal laboratories. Today, over 600 laboratories are 
represented. 
The basic mission of the Federal Laboratory Consortium is to promote the effective use of 
technical knowledge developed in federal departments and agencies by “networking” the various 
member laboratories with other federal entities, with state, local, and regional governments, and 
with private industry. To accomplish this, the Consortium establishes channels through which 
user needs can be identified and addressed. It also provides a means by which federal technology 
and expertise can be publicized and made available through individual laboratories to private 
industry for further development and commercialization. Access to the resources of the full 
federal laboratory system can be made through any laboratory representative, the FLC regional 
coordinators, the Washington area representative, or by contacting the Chairman or Executive 
Director. 
The FLC itself does not transfer technology; it assists and improves the technology transfer 
efforts of the laboratories where the work is performed. In addition to developing methods to 
augment individual laboratory transfer efforts, the Consortium serves as a clearinghouse for 
requests for assistance and will refer to the appropriate laboratory or federal department. The 
work of the Consortium is funded by a set-aside of 0.008% of the portion of each agency’s R&D 
budget used for the laboratories. 
P.L. 96-480, P.L. 99-502, and Amendments 
In 1980, the U.S. Congress enacted P.L. 96-480, the Stevenson-Wydler Technology Innovation 
Act. Recognizing the benefits to be derived from the transfer of technology, the law explicitly 
states that: 
It is the continuing responsibility of the federal government to ensure the full use of the 
results of the Nation’s federal investment in research and development. To this end the 
federal government shall strive where appropriate to transfer federally owned or originated 
[non-classified] technology to state and local governments and to the private sector. 
Prior to this law, technology transfer was not part of the mission requirements of the federal 
departments and agencies, with the exception of the National Aeronautics and Space 
Administration. This left laboratory personnel open to questions as to the suitability of their 
transfer activities. However, P.L. 96-480 “legitimized” the transfer effort and mandated that 
technology transfer be accomplished as an expressed part of each agency’s mission. 
Section 11 created the mechanisms by which federal agencies and their laboratories can transfer 
technology. Each department with at least one laboratory must make available not less than 0.5% 
of its R&D budget for transfer activities, although this requirement can and has been waived. To 
Congressional Research Service 
4 
Technology Transfer: Use of Federally Funded Research and Development 
 
facilitate transfer from the laboratories, each one is required to establish an Office of Research 
and Technology Applications (ORTA); laboratories with annual budgets exceeding $20 million 
must have at least one full-time staff person for this office (although the latter provision can also 
be waived). The function of the ORTA is to identify technologies and ideas that have potential for 
application in other settings. 
Additional incentives for the transfer and commercialization of technology are contained in 
various amendments to Stevenson-Wydler. P.L. 99-502, the Federal Technology Transfer Act, 
amends P.L. 96-480 to allow government-owned, government-operated laboratories (GOGOs) to 
enter into cooperative research and development agreements (CRADAs) with universities and the 
private sector. The authority to enter into these agreements was extended to government-owned, 
contractor-operated laboratories (generally the laboratories of the Department of Energy, DOE) in 
the FY1990 Defense Authorization Act (P.L. 101-189). A CRADA is a specific legal document 
(not a procurement contract) which defines the collaborative venture. It is intended to be 
developed at the laboratory level, with limited agency review. In agencies which operate their 
own laboratories, the laboratory director is permitted to make decisions to participate in CRADAs 
in an effort to decentralize and expedite the technology transfer process. Generally, at agencies 
which use contractors to run their laboratories, specifically DOE, the CRADA is to be approved 
by headquarters. P.L. 106-398, however, allows the agency to define certain conditions under 
which the CRADA may be approved by a laboratory itself rather than headquarters. 
The work performed under a cooperative research and development agreement must be consistent 
with the laboratory’s mission. In pursuing these joint efforts, the laboratory may accept funds, 
personnel, services, and property from the collaborating party and may provide personnel, 
services, and property to the participating organization. The government can cover overhead costs 
incurred in support of the CRADA, but is expressly prohibited from providing direct funding to 
the industrial partner. In GOGO laboratories, this support comes directly from budgeted R&D 
accounts. Prior to the elimination of a line item in the budget to support non-defense energy 
technology transfer, the Energy Department generally relied on a competitive selection process 
run by headquarters to allocate funding specifically designated to cover the federal portion of the 
CRADA. Now these efforts are to be supported through programmatic funds. 
Under a CRADA, title to, or licenses for, inventions made by a laboratory employee may be 
granted in advance to the participating company, university, or consortium by the director of the 
laboratory. In addition, the director can waive, in advance, any right of ownership the government 
might have on inventions resulting from the collaborative effort regardless of size of the 
company. This diverges from other patent law that requires title to inventions made under federal 
R&D funding be given to small businesses, not-for-profits, and universities. In all cases, the 
government retains a nonexclusive, nontransferable, irrevocable, paid-up license to practice, or 
have practiced, the invention for its own needs. 
Laboratory personnel and former employees are permitted to participate in commercialization 
activities if these are consistent with the agencies’ regulations and rules of conduct. Federal 
employees are subject to conflict of interest restraints. In the case of government-owned, 
contractor-operated laboratories, P.L. 101-189 required the establishment of conflict of interest 
provisions regarding CRADAs to be included in the laboratories’ operating contracts within 150 
days of enactment of the law. Preference for cooperative ventures is given to small businesses, 
companies which will manufacture in the United States, or foreign firms from countries that 
permit American companies to enter into similar arrangements. According to the Department of 
Congressional Research Service 
5 
Technology Transfer: Use of Federally Funded Research and Development 
 
Commerce, between FY2004 and FY2008, approximately 3,500 – 4,000 traditional CRADAs 
were active each year.3 
P.L. 99-502 provides for cash awards to federal laboratory personnel for activities facilitating 
scientific or technological advancements which have either commercial value or contribute to the 
mission of the laboratory and for the transfer of technology leading to commercialization. As an 
additional incentive, federal employees responsible for an invention are to receive at least 15% of 
royalties generated by the licensing of the patent associated with their work. The agencies may 
establish their own royalty sharing programs within certain guidelines. If the government has the 
right to an invention but chooses not to patent, the inventor, either as a current or former federal 
employee, can obtain title subject to the above-mentioned licensing rights of the government. 
To further facilitate the transfer process, a provision of the National Defense Authorization Act 
for FY1991 (P.L. 101-510) amends Stevenson-Wydler allowing government agencies and 
laboratories to develop partnership intermediary programs augmenting the transfer of laboratory 
technology to the small business sector. 
P.L. 104-113, the Technology Transfer Improvements and Advancement Act, clarifies existing 
policy with respect to the dispensation of intellectual property under a CRADA by amending the 
Stevenson-Wydler Act. Responding to criticism that ownership of patents is an obstacle to the 
quick development of CRADAs, this bill guarantees an industrial partner the option to select, at 
the minimum, an exclusive license for a field of use to the resulting invention. If the invention is 
made solely by the private party, then they may receive the patent. However, the government 
maintains a right to have the invention utilized for compelling public health, safety, or regulatory 
reasons and the ability to license the patent should the industrial partner fail to commercialize the 
invention. 
P.L. 100-418, Omnibus Trade and Competitiveness Act 
In response to concerns over the development and application of new technology, the 1988 
Omnibus Trade and Competitiveness Act contained several provisions designed to foster 
technology transfer. The law redesignated the National Bureau of Standards as the National 
Institute of Standards and Technology (NIST), and mandated the establishment of (among other 
things): (1) an Advanced Technology Program to encourage public-private cooperative efforts in 
the development of industrial technology and to promote the use of NIST technology and 
expertise; (2) Regional Manufacturing Technology Transfer Centers; and (3) a Clearinghouse on 
State and local innovation related activities. The set-aside for operation of the Federal Laboratory 
Consortium created in P.L. 99-502 was also increased from 0.005% of the laboratory R&D 
budget to 0.008%. 
The now-terminated Advanced Technology Program (ATP) provided seed funding, matched by 
private-sector investment, to companies or consortia of universities, industries, and government 
laboratories to accelerate the development of generic technologies that have broad application 
across industries.4 The first awards were made in 1991. By the end of the program in 2007, 824 
                                                
3 U.S. Department of Commerce, National Institute of Standards and Technology, Federal Laboratory Technology 
Transfer, Fiscal Year 2008, March 2010, 8, available at http://www.nist.gov/tpo/publications/upload/ 
Fed_Lab_Tech_Transfer_Report_Congress_FY08_3-8-2010.pdf. 
4 See CRS Report 95-36, The Advanced Technology Program, by Wendy H. Schacht. 
Congressional Research Service 
6 
Technology Transfer: Use of Federally Funded Research and Development 
 
projects had been funded representing approximately $1.6 billion in federal dollars matched by 
$1.5 billion in financing from the private sector. Approximately 28% of awards (227) were made 
for joint ventures.5 
The first four ATP competitions (through August 1994) were all general in nature. However, in 
response to large increases in federal funding, NIST, in conjunction with industry, identified 
various key areas for long-range support including information infrastructure for healthcare; tools 
for DNA diagnostics; component-based software; manufacturing composite structures; computer-
integrated manufacturing for electronics; digital data storage; advanced vapor-compression 
refrigeration systems; motor vehicle manufacturing technology; materials processing for heavy 
manufacturing; catalysis and biocatalysis technologies; advanced manufacturing control systems; 
digital video in information networks; engineering; photonics manufacturing; premium power; 
microelectronics manufacturing infrastructure; selective-membrane platforms; and adaptive 
learning systems. The general competition continued. In FY1999, NIST dropped the focused 
areas in favor of one competition open to all areas of technology.  
P.L. 110-69, the America COMPETES Act, created the new Technology Innovation Program 
(TIP) to replace the Advanced Technology Program.6 While similar to ATP in the intent to 
promote high-risk R&D that would be of broad-based economic benefit to the Nation, there are 
several differences in the operation of the new activity. Funding under TIP is limited to small and 
medium-sized businesses whereas grants under ATP were available to companies regardless of 
size. In addition, in the Advanced Technology Program, joint ventures were required to include 
two separately owned for-profit firms and could involve universities, government laboratories, 
and other research establishments as participants in the project but not as recipients of the grant. 
In the TIP initiative, a joint venture may involve two separately owned for-profit companies but 
may also be comprised of one small or medium-sized firm and a university. A single company 
could receive up to $2 million for up to three years under ATP; under TIP, the participating 
company (which must be a small or medium-sized business) may receive up to $3 million for up 
to three years. In ATP, small and medium-sized companies were not required to cost share (large 
firms provided 60% of the total cost of the project) while in TIP there is a 50% cost sharing 
requirement which, again, only applies to the small and medium-sized businesses that are eligible. 
There were no funding limits for the five-year funding available for joint ventures under ATP; the 
TIP limits joint venture funding to $9 million for up to five years. The Advisory Board that was 
created to assist in the Advanced Technology Program included industry representatives as well 
as federal government personnel and representatives from other research organizations. The 
Advisory Board for the Technology Innovation Program is comprised of only private sector 
members. 
In January 2009, nine TIP awards were announced for “new research projects to develop 
advanced sensing technologies that would enable timely and detailed monitoring and inspection 
of the structural health of bridges, roadways and water systems that comprise a significant 
component of the nation’s public infrastructure.” According to the agency, $42.5 million in 
federal money is expected to be matched by $45.7 million in private sector support. Twenty 
additional awards were announced in December 2009 totaling almost $71.0 million in NIST 
funding with approximately $145.7 million in financing from other sources. In April 2010, NIST 
                                                
5 National Institute of Standards and Technology, Historical Statistics on ATP Awards/Winners, available at 
http://www.atp.nist.gov/eao/statistics.htm. 
6 See CRS Report RS22815, The Technology Innovation Program, by Wendy H. Schacht. 
Congressional Research Service 
7 
Technology Transfer: Use of Federally Funded Research and Development 
 
announced a new TIP competition in the area of “Manufacutring and Biomanufacturing: 
Materials Advanced and Critical Processes.”7 This program is expected to fund 25 new projects 
totaling approximately $25 million for the first year. The intent is to facilitate the use and 
commercialization of new materials in the production process.8 
The Omnibus Trade and Competitiveness Act (P.L. 100-418) also created a program of regional 
centers to assist small manufacturing companies’ use of knowledge and technology developed 
under the auspices of the National Institute of Standards and Technology and other federal 
agencies.9 Federal funding for the centers is matched by non-federal sources including state and 
local governments and industry. Originally, seven Regional Centers for the Transfer of 
Manufacturing Technology were selected and are operational: the Great Lakes Manufacturing 
Technology Center at the Cleveland Advanced Manufacturing Program in Ohio; the Northeast 
Manufacturing Technology Center at Rensselaer Polytechnic Institute in Troy, New York (now 
called the New York Manufacturing Extension Partnership); the South Carolina Technology 
Transfer Cooperative based at the University of South Carolina in Columbia; the Midwest 
Manufacturing Technology Center at the Industrial Technology Institute in Ann Arbor, Michigan; 
the Mid-American Manufacturing Technology Center at the Kansas Technology Enterprise 
Corporation of Topeka; the California Manufacturing Technology Center at El Camino College in 
Torrance; and the Upper Midwest Manufacturing Technology Center in Minneapolis. 
The original program expanded in 1994 creating the Manufacturing Extension Partnership (MEP) 
to meet new and growing needs of the community. In a more varied approach, the Partnership 
involves both large centers and smaller, more dispersed organizations sometimes affiliated with 
larger centers. Also included is the NIST State Technology Extension Program which provides 
states with grants to develop the infrastructure necessary to transfer technology from the federal 
government to the private sector (an effort which was also mandated by P.L. 100-418) and a 
program that electronically ties the disparate parties together along with other federal, state, local, 
and academic technology transfer organizations. There are now centers in all 50 states and Puerto 
Rico. Since the program was created in 1989, awards made by NIST for extension activities 
resulting in the creation of approximately 400 regional offices. [It should be noted that the 
Department of Defense also funded 36 centers through its Technology Reinvestment Project 
(TRP) in FY1994 and FY1995. When the TRP was terminated, NIST took over support for 20 of 
these programs in FY1996 and financed the remaining ones during FY1997.] 
The America COMPETES Act authorized (but did not fund) a new NIST program of partnerships 
between industry and other educational or research institutions to develop new manufacturing 
processes, techniques, or materials. In addition, a manufacturing fellowship program would be 
created with stipends available for post-doctoral work at NIST.  
In October 2010, NIST announced the award of $9.1 million in cooperative agreements for 22 
projects “designed to enhance the productivity, technological performance and global 
competitiveness of U.S. manufacturers.”10 The funding was granted on a competitive basis to 
                                                
7 National Institute of Standards and Technology, 2010 TIP Competition Focuses on Manufacturing Technologies, 
April 15, 2010, available at http://www.nist.gov/tip/20100413_tip_comp_announce.cfm. 
8 Ibid. 
9 See CRS Report 97-104, Manufacturing Extension Partnership Program: An Overview, by Wendy H. Schacht. 
10 National Institute of Standards and Technology, NIST Manufacturing Extension Partnership Awards $9.1 Million for 
22 Projects to Enhance U.S. Manufacturers’ Global Competitiveness, Press Release, October 5, 2010, available at 
http://www.nist.gov/mep/upload/100410-MEP-Competition-press-release-FINAL.pdf. 
Congressional Research Service 
8 
Technology Transfer: Use of Federally Funded Research and Development 
 
non-profit organizations that will work with the MEP centers and address one or more of the areas 
that have been identified by NIST as critical to U.S. manufacturing. These activities differ from 
the established MEP effort in which no new manufacturing research is conducted and funded as 
existing manufacturing technology is applied to the needs of small and medium-sized firms. 
Patents 
The patent system was created to promote innovation. Based on Article I, Section 8 of the U.S. 
Constitution which states: “The Congress Shall Have Power ... To promote the Progress of 
Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive 
Right to their respective Writings and Discoveries ... ”, the patent system encourages innovation 
by simultaneously protecting the inventor and fostering competition. Originally, it provided the 
inventor with a lead time of 17 years (from the date of issuance) to develop his idea, 
commercialize, and thereby realize a return on his initial investment. Today, in response to the 
Uruguay Round Agreements Act, the term of the patent has been changed to 20 years from date of 
filing. The process of obtaining a patent places the idea in the public domain. As a disclosure 
system, the patent can, and generally does, stimulate other firms or inventors to invent “around” 
existing patents to provide parallel technical developments or meet similar market needs. 
Ownership of patents derived from research and development performed under federal funding 
affects the transfer of technology from federal laboratories to the private sector. Generally, the 
government retains title to these inventions and can issue to companies either an exclusive license 
or, more commonly, a nonexclusive license. However, it is argued that without title (or at least an 
exclusive license) to an invention and the protection it conveys, a company will not invest the 
additional time and money necessary for commercialization. This contention is supported by the 
fact that, although a portion of ideas patented by the federal government have potential for further 
development, application, and marketing, only about 10% of these are ever used in the private 
sector. However, there is no universal agreement on this issue. It also is asserted that title should 
remain in the public sector where it is accessible to all interested parties since federal funds were 
used to finance the work. 
Despite the disagreements, the Congress has accepted to some extent the proposition that vesting 
title to the contractor will encourage commercialization. P.L. 96-517, Amendments to the Patent 
and Trademark Laws (commonly known as the Bayh-Doyle Act), provides, in part, for 
contractors to obtain title if they are small businesses, universities, or not-for-profit institutions. 
Certain rights are reserved for the government and these organizations are required to 
commercialize within a predetermined and agreed-on time.11 Yet it continues to be argued that 
patent exclusivity is important for both large and small firms. In a February 1983 memorandum 
concerning the vesting of title to inventions made under federal funding, President Reagan 
ordered all agencies to treat, as allowable by law, all contractors regardless of size as prescribed 
in P.L. 96-517. This, however, does not have a legislative basis. 
Further changes in the patent laws made by the enactment of P.L. 98-620 also affect the transfer 
of technology from federal laboratories to the private sector. In a provision that was designed to 
increase interaction and cooperation between government-owned, contractor-operated (GOCO) 
laboratories and private industry in the transfer of technology, Title V permits decisions to be 
                                                
11 See CRS Report RL32076, The Bayh-Dole Act: Selected Issues in Patent Policy and the Commercialization 
of Technology, by Wendy H. Schacht. 
Congressional Research Service 
9 
Technology Transfer: Use of Federally Funded Research and Development 
 
made at the laboratory level as to the award of licenses for laboratory generated patents. The 
contractor is also permitted by this legislation to receive patent royalties for use in additional 
research and development, for awards to individual inventors on staff, or for education. A cap 
exists on the amount of the royalty returning to the laboratory so as not to distort the agency’s 
mission and congressionally mandated R&D agenda. However, the creation of discretionary 
funds gives laboratory personnel added incentive to encourage and complete technology transfers. 
P.L. 98-620 also permits private companies, regardless of size, to obtain exclusive license for the 
full life of the government patent. Prior restrictions on large firms allowed exclusive license for 
only 5 of the (then) 17 years of the patent. The law permits those government laboratories that are 
run by universities or nonprofit institutions to retain title to inventions made in their institution 
(within certain defined limitations). Federal laboratories operated by large companies are not 
included in this provision. 
The Federal Technology Transfer Act and the FY1990 DOD authorization give all companies (not 
just small businesses, universities, and nonprofits) the right to retain title to inventions resulting 
from research performed under cooperative R&D agreements with government laboratories. If 
this occurs, the federal government retains a royalty-free license to use these patents. In addition, 
the Federal Technology Act states that the government agencies may retain a portion of royalty 
income rather than returning it to the Treasury. After payment of the prescribed amount to the 
inventor, the agencies must transfer the balance of the total to their government-operated 
laboratories, with the major portion distributed to the laboratory where the invention was made. 
The laboratory may keep all royalties up to 5% of their annual budget plus 25% of funds in 
excess of the 5% limit. The remaining 75% of the excess returns to the Treasury. Funds retained 
by the laboratory are to be used for expenses incurred in the administration and licensing of 
inventions; to reward laboratory personnel; to provide for personnel exchanges between 
laboratories; for education and training consistent with the laboratories’ and agencies’ missions; 
or for additional transfer. 
P.L. 106-404, the Technology Transfer Commercialization Act, signed into law on November 1, 
2000, made alterations in current practices concerning patents held by the government to make it 
easier for federal agencies to license such inventions. The law amends P.L. 98-480 and P.L. 96-
517 to decrease the time necessary to obtain an exclusive or partially exclusive license on 
federally owned patents. Previously, agencies were required to publicize the availability of 
technologies for three months using the Federal Register and then provide an additional 60 day 
notice of intent to license by an interested company. The new law shortens the period to 15 days 
in recognition of the ability of the Internet to offer widespread notification and the time 
constraints faced by industry in commercialization activities. Certain rights would be retained by 
the government. The legislation also allows licenses for existing government-owned inventions to 
be included in CRADAs. 
The CREATE Act, P.L. 108-453, made changes in the patent laws to promote cooperative 
research and development among universities, government, and the private sector. The legislation 
amended section 103(c) of title 25, United States Code, such that certain actions between 
researchers under a joint research agreement will not preclude patentability.12 
                                                
12 See CRS Report RS21882, Collaborative R&D and the Cooperative Research and Technology Enhancement 
(CREATE) Act, by Wendy H. Schacht. 
Congressional Research Service 
10 
Technology Transfer: Use of Federally Funded Research and Development 
 
Small Business Technology Transfer Program 
P.L. 102-564 created a three-year pilot program designed to facilitate the commercialization of 
university, nonprofit, and federal laboratory R&D by small companies. The Small Business 
Technology Transfer program (STTR) provides funding for research proposals which are 
developed and executed cooperatively between a small firm and a scientist in a research 
organization and fall under the mission requirements of the federal funding agency. Up to 
$100,000 in Phase I financing is available for one year to test the viability of the concept. Phase II 
awards of $500,000 may be made for two years to perform the research. Funding for 
commercialization of the results is expected from the private sector. Financial support for this 
effort comes from a phased-in set-aside of the R&D budgets of departments which spend over $1 
billion per year on research and development. Originally set to expire at the end of FY1996, the 
program was extended one year. P.L. 105-135 reauthorized the STTR through FY2001, while P.L. 
107-50 extended the program through FY2009. Since its last expiration on October 31, 2008, the 
program has been temporarily extended five times and is now operating through January 31, 
2011. The set-aside used to fund the activity was increased to 0.3% in FY2004. In addition, the 
amount of money available for individual Phase II grants increased from $500,000 to $750,000.13  
Further Considerations 
The federal laboratories have received a mandate to transfer technology. This, however, is not the 
same as a mandate to help the private sector in the development and commercialization of 
technology for the marketplace. While the missions of the government laboratories are often 
broad, direct assistance to industry is not included, with the exception of the National Institute of 
Standards and Technology. The laboratories were created to perform the R&D necessary to meet 
government needs, which typically are not consistent with the demands of the marketplace. 
The missions of the federal laboratories are under review, due, in part, to budget constraints and 
the changing world situation. National security is now being redefined to include economic well-
being in addition to weapons superiority. The laboratories which have contributed so much to the 
defense enterprise are being re-evaluated. These discussions provide an opportunity to debate 
whether the mandate of the federal R&D establishment should include expanded responsibilities 
for assistance to the private sector. Whether or not the missions of the U.S. government 
laboratories are changed to include expanded assistance to industry, there are various initiatives 
which may facilitate the technology transfer process under the laboratories’ current 
responsibilities. These include making the work performed in government institutions more 
relevant to industry through augmented cooperative R&D, increased private sector involvement 
early in the R&D efforts of the laboratories, and expanded commercialization activities. 
Because a significant portion of the laboratories are involved in defense research, questions arise 
as to whether or not the technologies in these institutions can be transferred in such a way as to be 
useful to commercial companies. In addition, the selection of one company over another to be 
involved in a transfer or in a cooperative R&D agreement raises issues of fairness and equity of 
access, as well as conflict of interest. And, while it is virtually impossible to prevent the flow of 
scientific and technical information abroad, there is ongoing interest in the extent of foreign 
                                                
13 See CRS Report 96-402, Small Business Innovation Research (SBIR) Program, by Wendy H. Schacht. 
Congressional Research Service 
11 
Technology Transfer: Use of Federally Funded Research and Development 
 
access to the federal laboratory establishment. How these concerns are addressed may be 
fundamental to the success of U.S. technology transfer. 
Over the past 25 or more years, the Congress has enacted various laws designed to facilitate 
cooperative R&D between and among government, industry, and academia. These laws include 
(but are not limited to) tax credits for industrial payments to universities for the performance of 
R&D, changes in the antitrust laws as they pertain to cooperative research and joint 
manufacturing, and improved technology transfer from federal laboratories to the private sector. 
The intent behind these legislative initiatives is to encourage collaborative ventures and thereby 
reduce the risks and costs associated with R&D as well as permit work to be undertaken that 
crosses traditional boundaries of expertise and experience leading to the development of new 
technologies and manufacturing processes for the marketplace. 
Today, the perspectives on joint R&D, technology transfer, and cooperative research and 
development agreements appear mixed. The results of legislative activity are open to discussion. 
In the recent past, both national political parties have supported measures to facilitate 
technological advancement. There are some indications that there may be a refocus on federal 
support for basic research as well as indirect measures to encourage technology development in 
the private sector. CRADAs, in particular, are a means to take this government-funded basic 
research from the federal laboratory system and move it to the industrial community for 
commercialization to meet both agency mission requirements and other national needs associated 
with the economic growth which comes from new products and processes. While the Advanced 
Technology Program faced much opposition in the House, the program continued to be funded, 
although at decreased levels until FY2008 when it was replaced by the Technology Innovation 
Program which appears to have more support from the Congress. When the Manufacturing 
Extension Partnership had its budget cut the funds were restored the following fiscal year. As the 
Congress makes decisions concerning funding for R&D, the role of the federal government in 
technology transfer, technology development, and commercialization might be expected to be 
explored further. 
 
Author Contact Information 
 
Wendy H. Schacht 
   
Specialist in Science and Technology Policy 
wschacht@crs.loc.gov, 7-7066 
 
 
Congressional Research Service 
12