Order Code RL30563
Report for Congress
Received through the CRS Web
Joint Strike Fighter (JSF) Program:
Background, Status, and Issues
Updated July 18, 2002
Christopher Bolkcom
Analyst in National Defense
Foreign Affairs, Defense, and Trade Division
Congressional Research Service ˜ The Library of Congress

Joint Strike Fighter (JSF) Program:
Background, Status, and Issues
Summary
The Defense Department’s Joint Strike Fighter (JSF) is one of three aircraft
programs at the center of current debate over tactical aviation, the others being the
Air Force F-22 fighter and the Navy F/A-18E/F fighter/attack plane. In November
1996, the Defense Department selected two major aerospace companies, Boeing and
Lockheed Martin, to demonstrate competing designs for the JSF, a joint-service and
multi-role fighter/attack plane. On October 26, 2001, the Lockheed Martin team was
selected to develop further and to produce a family of conventional take-off and
landing (CTOL), carrier-capable (CV), and short take-off vertical landing (STOVL)
aircraft for the U.S. Air Force, Navy, and Marine Corps and the U.K. Royal Navy as
well as other allied services. Originally designated the Joint Advanced Strike
Technology (JAST) program, the JSF program is a major issue in Congress because
of concerns about its cost and budgetary impact, effects on the defense industrial
base, and implications for U.S. national security in the early 21st century.
The JAST/JSF program evolved in response to the high cost of tactical aviation,
the need to deploy fewer types of aircraft to reduce acquisition and operating costs,
and current projections of future threat scenarios and enemy capabilities. The
program’s rationale and primary emphasis is joint-service development of a next-
generation multi-role aircraft that can be produced in affordable variants to meet
different operational requirements. Developing an affordable tri-service family of
CTOL and STOVL aircraft with different combat missions poses major technological
challenges. Moreover, if the JSF is to have joint-service support, the program must
yield affordable aircraft that can meet such divergent needs as those of the U.S. Air
Force for a successor to its low-cost F-16 and A-10 fighter/attack planes, those of the
U.S. Marine Corps and the U.K. Royal Navy for a successor to their Harrier STOVL
aircraft, and the U.S. Navy’s need for a successor to its carrier-based F-14 fighters
and A-6 attack planes and a complement to its F/A-18E/F fighter/attack planes.

This report discusses the background, status, and current issues of the JSF
program. Continuing developments and related congressional actions will be
reported in CRS Issue Brief IB92115, Tactical Aircraft Modernization: Issues for
Congress
, which also discusses the Air Force F-22, the Navy F/A-18EF, and the
Marine Corps V-22. These aircraft and the Air Force’s B-2 strategic bomber and C-
17 cargo/transport plane are the most expensive U.S. military aircraft programs. (See
CRS Report 95-409F, Long-Range Bomber Facts: Background Information by
Samuel Wolfe and Dagnija Sterste-Perkins, August 8, 2000 and CRS Report
RL30685, C-17 Cargo Aircraft Program by Christopher Bolkcom, updated
periodically.)

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Program Management and Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Funding and Projected Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Congressional Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
FY1994 - FY2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Design and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Foreign Sales and Allied Participation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Alternatives to JSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Major Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Need for New-Generation Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Affordability of Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Feasibility of Joint-Service Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Implications for U.S. Defense Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Appendix A: JSF Operational/Performance and Cost Requirements* . . . . . . . . 23
Appendix B: Pictures of JSF Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
List of Tables
Table 1. JAST/JSF Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Joint Strike Fighter (JSF) Program:
Background, Status, and Issues
Introduction1
The Joint Strike Fighter (JSF) program is expected to develop and build a family
of new-generation tactical aircraft for the Air Force, the Marine Corps, the Navy, and
Britain’s Royal Navy. As now projected, the JSF is the Defense Department’s largest
acquisition program in terms of cost and number of aircraft to be produced. Current
plans call for production of 2,912 aircraft in three versions — 1,763 for the Air
Force, 609 for the Marine Corps, up to 480 for the Navy2 and 60 for the British
Navy.3 Additional aircraft may be bought by Australia, Belgium, Canada, Denmark,
the Netherlands, Norway and other allied governments.
The Air Force plans to purchase a conventional landing and takeoff (CTOL)
version of the JSF to replace its current force of F-16s. The Marine Corps and the
Royal Navy plan to procure a short take-off vertical landing (STOVL) version of the
plane to replace their current fleets of Harrier vertical/short take-off and landing
(VSTOL) attack planes.4 The Navy plans to procure a carrier-capable CTOL version
— termed a CV — to replace older carrier-based aircraft.
The JSF program is scheduled to begin production around 2005, with first
aircraft deliveries projected to start in 2008. For years, the JSF’s cost goal was an
average flyaway cost of $28-$38 million in FY1994 dollars, depending on the service
version. In November 2000, the program director revised that goal to $31-$38
million each.5 The total program acquisition cost of the JSF program has been
1 More information about the Joint Strike Fighter may be found at the following websites:
Joint Strike Fighter Program Office [http://www.jast.mil/] and Lockheed Martin
[http://www.jsfteam.com/index.html].
2 The Navy has reportedly prosed a reduction in their purchase of both CV and STOVL JSF
versions. See the Program Management and Schedule section below.
3 Including the 2,852 U.S. aircraft recommended by the Quadrennial Defense Review in
May 1997 and the 60 U.K. aircraft for the Royal Navy. By comparison, 5,054 F-4s were
produced in 1959-1979; 3,805 F-5 versions in 1959-1989; and 2,960 A-4s in 1953-1979.
Jane’s All the World’s Aircraft, 1980-81: 380; 1990-91: 471; 1981-82: 413.
4 The U.S. Marine Corps and the U.K. Royal Navy and Royal Air Force operate versions of
the AV-8A/B Harrier aircraft flown by these services since the early 1970s. See CRS report
81-180F. The British Harrier V/STOL Aircraft: Analysis of Operational Experience and
Relevance to U.S. Tactical Aviation,
August 15, 1981.
5 Low-end cost of Joint Strike Fighter family raised to $31 million. Aerospace Daily.
(continued...)

CRS-2
estimated by CBO at about $219 billion in FY1997 dollars, including some $22
billion for research and development (R&D) and some $197 billion to procure these
aircraft.6 Their actual costs will depend on future inflation rates, technological
factors, and procurement schedules.
The JSF program emerged in late 1995 from the Joint Advanced Strike
Technology (JAST) program, which began in late 1993 as a result of the
Administration’s Bottom-Up Review (BUR) of U.S. defense policy and programs.
Having affirmed plans to abandon development of both the A-12/AFX aircraft that
was to replace the Navy’s A-6 attack planes and the multi-role fighter (MRF) that the
Air Force had considered to replace its F-16s, the BUR envisaged the JAST program
as a replacement for both these programs. In 1994, the JAST program was criticized
by some observers for being a technology-development program rather than a
focused effort to develop and procure new aircraft. In 1995, in response to
congressional direction, a program led by the Defense Advanced Research Projects
Agency (DARPA) to develop an advanced short takeoff and vertical landing
(ASTOVL) aircraft was incorporated into the JAST program, which opened the way
for Marine Corps and British Navy participation.7 The name of the program was then
changed to JSF to focus on joint development and production of a next-generation
fighter/attack plane.
During the JAST/JSF program’s 1994-1996 concept development phase, three
different aircraft designs were proposed by Boeing, Lockheed Martin, and
McDonnell Douglas (the latter teamed with Northrop Grumman and British
Aerospace) in a competitive program expected to shape the future of U.S. tactical
aviation and the U.S. defense industrial base.8 On November 16, 1996, the Defense
Department announced that Boeing and Lockheed Martin had been chosen to
compete in the 1997-2001 concept demonstration phase, in which each contractor
would build and flight-test two aircraft (one CTOL and one STOVL) to demonstrate
their concepts for three JSF variants to meet the different operational requirements
of the various services. The CTOL aircraft will demonstrate concepts for an Air
Force land-based (CTOL) variant and a Navy carrier-based (CV) variant, with the
STOVL aircraft demonstrating concepts for a variant to be operated by the U.S.
Marine Corps and the U.K. Royal Navy. On October 26, 2001, DoD selected a team
5 (...continued)
November 27, 2000.
6 U.S. Congressional Budget Office. A Look at Tomorrow’s Tactical Air Forces by Lane
Pierrot and Jo Ann Vines. January 1997: 83-87. This estimate assumed a JSF program of
2,978 aircraft (including 60 U.K. JSFs) as then projected. In May 1997, the Quadrennial
Defense Review recommended 2,852 U.S. JSFs, which together with 60 U.K. JSFs would
be a 2,912-plane program. Procuring fewer planes increases the unit cost of each plane but
reduces the total procurement cost of the program.
7 Since the early 1990s DARPA had funded various STOVL projects expected to develop
aircraft to replace both U.S. Marine Corps AV-8B Harriers and the U.K. Royal Navy’s Sea
Harriers. The merger of these research-development efforts with the JAST program in early
1995 cleared the way for U.S.-U.K. collaboration in JSF development.
8 Tirpak, John A. Strike Fighter. Air Force Magazine, October 1996: 22-28; Hough, Philip.
An Aircraft for the 21st Century. Sea Power, November 1996: 33-34.

CRS-3
of contractors led by Lockheed Martin to develop and produce the JSF. The three
variants — CTOL, CV and STOVL aircraft — are to have maximum commonality
in airframe, engine, and avionics components to reduce production and operation and
support costs.
Mainly because of their projected costs, three tactical aircraft programs are
currently subjects of debate over the types and numbers of aircraft that U.S. armed
forces may need in the future — the emergent JSF program, the Air Force F-22
program now nearing production, and the Navy’s F/A-18E/F program now in
production. Congressional decisions on these programs will have important
implications for defense funding requirements, U.S. military capabilities, and the
U.S. aerospace industry.
Program Management and Schedule
The JSF program is jointly staffed and managed by the Department of the Air
Force and the Department of the Navy (comprising the Navy and the Marine Corps),
with coordination among the services reinforced by alternating Air Force and Navy
Department officials in key management positions. For example, Lt. General George
Muellner, USAF, was the program’s first director in 1994, with Rear Admiral Craig
Steidle, USN, serving as deputy director. Subsequently Rear Admiral Steidle
directed the program, with Brigadier General Leslie Kenne, USAF, as his deputy in
late 1996 and his successor as program director in August 1997. The current director
is MGen Michael Hough (USMC). His deputy is Brig. Gen. John Hudson (USAF).
Service Acquisition Executive (SAE) responsibility also alternates, with the Air
Force having that responsibility when the program director is from the Navy
Department and the Navy currently in that role with an Air Force director of the
program.
Funding for the program has been requested and provided mainly through Air
Force and Navy research-development (R&D) budgets, with some defense-wide
funding since FY1996, when DARPA’s work on STOVL aircraft designs was
incorporated into the JAST program. In May 1996, in response to Congressional
critics, the Department of Defense (DOD) designated the Joint Strike Fighter as a
major defense acquisition program, making the program’s schedule and R&D cost
data more accessible through the Defense Department’s quarterly Selected
Acquisition Report (SAR) submissions, thus facilitating Congressional oversight.9
The concept development phase of the JSF program, which began with contracts
awarded in FY1994, ended on August 15, 2001. This was the deadline for the
contractor teams to submit the final data on their flight tests. They were then obliged
to answer questions or requests for additional information while preparing their best-
9 Weldon: Designate JSF as Major Acquisition Program. Aerospace Daily, May 28, 1996:
333; DOD Designates JSF as a Major Defense Acquisition Program. Aerospace Daily, May
31, 1996: 355.

CRS-4
and-final offers to the Pentagon by mid-September.10 On October 26, 2001 the
Department of Defense chose Lockheed Martin as the winner of the JSF production
contract. The criteria for selection included past performance, projected performance,
and cost.
Flight testing of concept demonstrator aircraft – at one time planned for the July
2000 time frame – ran from September 18, 2000 to July 30, 2001. The cause of the
flight testing delay has been attributed to a number of factors. Some point to technical
challenges, saying that the contractors had difficulty with complex software
integration, and STOVL propulsion designs. Others suggest that congressional
reductions in EMD funding also slowed down the program. Former DoD acquisition
chief Jacques Gansler was reported to have blamed the delay in part on Congresses
mandate that 20 hours of STOVL flight testing be completed prior to EMD. 11
During flight testing, both contractors began by flying the Air Force variant of
the aircraft, and concluded with the more technically challenging Marine Corps
variant. Boeing ended its STOVL test program after 57 flights. Lockheed Martin
performed 38 STOVL flights. Both contractors claimed successes. Boeing flew its
demonstrator a month before Lockheed Martin’s got off the ground. Lockheed said
it was the first to make a short takeoff, accelerate to supersonic speed, decelerate to
hover and land vertically in a single flight. Both companies touted their managerial
skills as well as their technical achievements.
The JSF program’s EMD phase should run until around 2008, at which time full
rate production is scheduled to begin. This full-scale development phase is expected
to lead to production of aircraft with a projected initial operational capability around
2010. Given the complexities of fielding three variants of the JSF design, getting
such aircraft in operation by 2010 is viewed by some as optimistic in light of the
experience of previous joint aircraft development programs.12 Others argue,
however, that new developments in technology as well as changes in perceptions of
budget priorities and defense requirements might enable some JSF variants to
achieve initial operating capability (IOC) by around 2010. First flight of JSF is
scheduled for 48 months after contract award. The production plan for JSF includes
building 22 test articles during EMD, seven of which would be non-flying and 15
flying aircraft. Full rate production is scheduled to begin in 2008.13
The JSF is expected to remain in production at least through the 2020s. In 1996,
the program included over 3,000 aircraft: 2,036 for the Air Force, 642 for the
Marines, 300 for the U.S. Navy and 60 for the Royal Navy. In May 1997, however,
10 Katie Fairbank. “JSF Deal is Down to the Paperwork.” Dallas Morning News. August 15,
2001.
11 Linda de France. “Pentagon Gives JSF, F-22 Wiggle Room for Meeting Requirements.”
Aerospace Daily. October 13, 2000.
12 Grossman, Elaine M. Fielding Date for JSF May Slip by One or Two Years. Inside the
Pentagon,
January 18, 1996: 3-4.
13 Hunter Keeter. “Lockheed Martin, Boeing Execs Outline Priorities for Joint Strike Fighter
EMD.” Defense Daily. August 20, 2001.

CRS-5
the QDR recommended reducing projected procurements for the U.S. armed forces
from 2,978 JSF aircraft to 2,852: 1,763 for the Air Force, 609 for the Marines, and
up to 480 for the Navy.14 Thus, the program would comprise 2,912 aircraft (2,852
U.S. and 60 U.K. JSFs), based on these recommendations. The 1997 QDR also
concluded that some 230 of the Navy’s projected buy of 480 JSFs could instead be
F/A-18E/Fs, depending on the progress of the JSF program and the price of its Navy
variant compared to the F/A-18E/F. Former Defense Secretary William Cohen and
other DOD officials stated in May 1997 that they anticipated a “creative tension”
between contractors producing the F/A-18E/F and those developing the JSF, which
would result in a competitive situation similar to what occurred in the C-17 program
in response to Boeing’s proposed alternatives for Air Force transport planes.15
In March 2002 it was reported that as part of a larger study on Navy/Marine
Corps aviation, the Navy was considering reducing its planned purchase of JSFs from
1,089 to 680 aircraft.16 According to news accounts, the proposed reduction would
cut 259 jets from the Marine Corps buy, and 50 from the Navy purchase.17 Navy
officials say that this reduction in aircraft is consistent with attempts to transform the
services, and that the final decision on the number of JSF’s to procure rests with top
officials in DoD.18
There have been some indications that like the test schedule, the production
schedule could slip. For instance, the May 1997 report on the Quadrennial Defense
Review noted that the program’s “maximum planned production rate of 194 aircraft
[per year] will be reached in 2012 rather than 2010, easing overall modernization
affordability.”19 Thus, funding competition with other programs would affect annual
procurement of the JSF, as has often been the case with other aircraft programs.20
14 Quadrennial Defense Review Cuts Procurement in FY1999, 2000. Aerospace Daily, May
20, 1997: 280.
15 Muradian, Vago. QDR Tac Air Cuts Will Save $30 Billion, Ralston Says. Defense Daily,
May 20, 1997: 301-302; F/A-18E/F Buy Depends on JSF Progress, Cohen Tells SASC.
Aerospace Daily, May 21, 1997: 285, 288. See also CRS Issue Brief IB93041, C-17 Cargo
Aircraft Program.

16 Anne Marie Squeo. “Pentagon Might Slash Its Plans to Buy Fighter Jets By About 30%.”
Wall Street Journal. March 22, 2002.
17 Vago Muradian. “DoD Assesses Navy Proposal to Scale Back JSF Purchase by 409 Jets.”
Defense News. March 22, 2002.
18 Marc Selinger. “Navy Chief Defends Willingness to Look At JSF, Super Hornet Cuts.”
Aerospace Daily. March 29, 2002.
19 U.S. Department of Defense. Report of the Quadrennial Defense Review [by] William
S. Cohen, Secretary of Defense. May 1997: 46.
20 U.S. Congressional Budget Office. A Look at Tomorrow’s Tactical Air Forces by Lane
Pierrot and Jo Ann Vines. January 1997: 51-52.

CRS-6
Funding and Projected Costs
The Defense Department’s quarterly Selected Acquisition Report (SAR) of June
30, 2000, estimated the development cost of the JSF at $23.2 billion in then-year
dollars,21 with full-scale development or EMD (Engineering-Manufacturing
Development) beginning in 2001 and continuing until 2008. An official estimate of
the total program cost of the JSF — including development, procurement, and other
related costs — has not been released. However, program officials have stated their
“affordability goals” for flyaway cost per aircraft in FY1994 dollars: $28 million for
the Air Force CTOL variant, $30-$35 million for the Marine Corps STOVL variant,
and $31-$38 million for the Navy’s CV variant (carrier-based CTOLs).22 On
November 26, 2000, Maj. Gen Hough, the JSF program director announced that the
cost estimate for the CTOL variant had increased 10% to $31 million per aircraft in
FY1994 dollars. While this increase was due to “marketplace changes,” or higher
than expected labor and over head costs, Maj. Gen Hough said that the cost estimates
for the CV and STOVL variants had not changed.23
According to JSF officials, cost goals are expressed as unit flyaway costs
because flyaway cost accounts for such a significant percentage of procurement cost
that this would be the most relevant measure of cost for the cost/performance
tradeoffs that will determine which contractor will build the JSF family of aircraft.24
In early 1997, Congressional Budget Office (CBO) analysts estimated that the
total program cost of 2,978 JSF aircraft procured through the 2020s would be about
$219 billion in FY1997 dollars, including projected procurement costs of $197.3
billion, development costs of $21.5 billion, and some $200 million in military
construction costs. Each JSF would thus have an estimated program unit cost of
$73.5 million in FY1997 dollars. This analysis suggested that the JSF program’s
“affordability goals” for unit prices might be optimistic. For example, CBO analysts
assumed in their estimate that the JSF’s stealth features will entail some cost
21 Then-year dollars include both actual expenditures in prior years and projected fundings
for future years, in contrast to constant dollars of a specific fiscal year.
22 DoD uses a “deflator scale” to translate then-year dollars into constant year dollars and
thus account for inflation. Using these deflators to translate the JSF affordability goals from
FY94 dollars to FY01 dollars generates the following cost figures: COTL variant; $30.5
million, CV variant; $32.7 - $38.1 million, STOVL variant; $33.8 million - $41.42 million.
23 “Low-end cost of Joint Strike Fighter family raised to $31 million.” Aerospace Daily.
November 27, 2000.
24 Capaccio, Tony. JSF Office Details Development Cost Issues. Defense Week, May 5,
1997: 5. Flyaway cost includes only the procurement costs of airframes, engines, and
avionics; it does not include the costs of equipment and manuals to maintain the aircraft,
simulators for pilot training, and initial spare parts, and it excludes R&D costs and any
military construction costs for special facilities. Thus, flyaway cost understates the actual
cost of an aircraft, which is more fully expressed as program or acquisition cost, which
includes all of the items noted above.

CRS-7
penalties in both development and production of these aircraft, which DOD’s
estimates appear not to take into account.25
As a new program just getting underway, the JSF’s annual budget requests have
been modest compared to those of the F/A-18E/F and F-22 programs, which are at
more advanced stages; e.g., the FY2002 defense budget, requested $1.5 billion in
Navy and Air Force R&D funding for the JSF, compared to $3.9 billion to procure
13 F-22 Raptors, $3.1 billion to procure 48 F/A-18E/F Super Hornets,
In its March 22, 1996, request for proposals for concept demonstration, the
program office projected JSF funding requirements totaling $2.2 billion in FY1997-
FY2000.26 The concept demonstration contracts announced on November 16, 1996,
totaled $2,212.6 million ($718.8 million to Lockheed Martin; $661.8 million to
Boeing; and $832 million to Pratt & Whitney for engine-related work). As a
collaborative partner in the JSF program, the British government agreed to provide
some $200 million during the 1997-2001 concept demonstration phase.
Congressional Action
The Administration’s FY2003 budget request included $3.5 billion in funding
for the Joint Strike Fighter; $1.7 billion in RDT&E funds for the Air Force and the
Department of the Navy.27
In their markup of the FY2003 defense authorization bill (H.R. 4546), House
authorizors fully supported the Administration’s request for JSF funding.28 Senate
authorizors (S. 2514) also matched the Administration’s request for JSF funds.
House appropriators (H.R. 5010) also provided full funding for the JSF.29 Senate
appropriators reportedly provided full funding for the JSF.30
25 U.S. Congressional Budget Office. A Look at Tomorrow’s Tactical Air Forces by Lane
Pierrot and Jo Ann Vines. January 1997: 83-87.
26 Projected annual requirements were $400 million (FY97), $720 million (FY98), $700
million (FY99), and $400 (FY00). Joint Strike Fighter RFP Shows Increased USAF Buy.
Aerospace Daily, March 25, 1996: 455.
27 “Department of Defense FY2003 Budget Program Acquisition Costs. Aerospace Daily.
February 5, 2002. P.6.
28 House Armed Services Committee Reports Fiscal Year 2003 Defense Authorization
Legislation
. Press Release. U.S. House of Representatives. Committee on Armed Services.
May 1, 2002.
29 “House Passes FY03 Defense Appropriations Bill.” Press Release. United States House
of Representatives. Committee on Appropriations. June 28, 2002.
30 Marc Selinger. “Senate Panel Increases F/A-18E/F, C-17 Buys, Okays Spacecraft
Financing.” Aerospace Daily. July 17, 2002.

CRS-8
FY1994 - FY2002
Reflecting their plan to move the JSF into the EMD phase in October 2001, the
Administration’s $1.5 billion FY2002 request for JSF funding was entirely in the
EMD account. Expressing their support for the program, but also their doubt that the
DoD would be prepared to enter JSF EMD on schedule, the Senate Armed Services
Committee reduced EMD funding. Concept development funds were increased to
keep contractor teams together, but the net authorization was a reduction of $247.2
million. House authorizers supported the Administration’s request, and increased it
by $10 million to reduce development schedule risk of JSF alternate engine common
hardware components. Authorization conferees (S. 1438, S.Rept. 107-333) supported
the Administration’s request for EMD funding. Conferees also expressed their
concern regarding industrial base issues and
direct the Under Secretary of Defense for Acquisition, Technology, and Logistics
to submit a report, with the sub-mission of the fiscal year 2003 budget request,
which details: (1) projections for the military aircraft industrial base, to include
foreign military sales, between now and fiscal year 2015; and (2) actions taken
by the DOD to encourage teaming arrangements in the JSF program that make
the most efficient use of the expertise in the industrial base.31
Following Senate authorization, Senate appropriators transferred $30 million
from EMD to concept development in anticipation of a delay in the downselect.
Senate appropriators also recommended a $247.2 million reduction to the request,
evenly split between the Navy and Air Force. House authorizors supported the
Administration’s plan as requested. In their report H.R. 3338 (107-350),
appropriations conferees matched the Administration’s request for JSF EMD funds,
and increased the Navy’s account by $2.5 million for the Alternate Engine Program.
From FY1994 to FY2001 Congress provided funding within about $329 million
of the approximately $4.3 billion requested by the Administration. Congress imposed
its largest funding cut in FY2001 ($168 million), but provided more than requested
in fiscal years 1998, 1999, and 2000.
Over this time period, Congress has consistently expressed concern regarding
the following issues (1) the pace of the JSF program, (2) it’s affordability in the
context of overall DoD tactical aviation modernization, (3) the ability to procure a
joint aircraft with widely different STOVL and COTL flight parameters, and (4) the
JSF program’s lack of synchronization with the 1997 Quadrennial Defense Review
(QDR).
The Senate Appropriations Committee recommended FY1997 funding for the
JSF as requested, but the Committee questioned “the current pace of the Joint Strike
31 107th Congress, 1st Session. U.S. House of Representatives. Report 107-333 (S. 1438)
National Defense Authorization Act for Fiscal Year 2002. Conference Report. December
12, 2001. p.574.

CRS-9
Fighter program, given the costs to continue it, the potential for cost growth, and the
need to fund other service priorities now and in the future.”32
Table 1. JAST/JSF Funding
(in millions of then year dollars)
Request
Appropriation
FY1994
50
29.7
FY1995
201.4
182.1
FY1996
331.2
190.2
FY1997
589
571
FY1998
930.9
945.9
FY1999
919.5
927
FY2000
476.6
491.6
FY2001
856.7
688.6
FY2002
1,536.7
1,539.2
Total
5892
5565.3
Concerns about the significantly different flight parameters of conventional and
STOVL aircraft were reflected in the House version of the FY1997 defense
authorization bill, which denied funding for a STOVL variant of the JSF (H.R. 3230,
Sec. 220), thus precluding participation by the U.S. Marines and U.K. Royal Navy
in the program.33 The language denying funds for a STOVL aircraft was not included
in the conference version of the FY1997 defense authorization bill, but the conferees
retained a House provision calling for a report detailing force structure requirements
for projected threats in 2000-2025 as well as alternative force mixes of aircraft and
munitions and the estimated costs, operational effectiveness, and delivery schedules
of these weapon systems. (H.Rept. 104-724: 37-38).34
When considering the FY1998 defense budget request, Congress discussed the
JSF program as well as the F-22 and F/A-18E/F programs in terms of their long-term
32 U.S. Congress. Senate Appropriations Committee. FY1997 Defense Appropriation Act;
report on S. 1894. Washington, U.S. Govt. Print. Off., 1996. 104th Congress, 2nd session.
S.Rept. 104-286: 99.
33 Robinson, John and Sheila Foote. Management Concerns Drove Critical JSF Language,
Weldon Says. Defense Daily, May 9, 1996: 236-237. See also in Congressional Record,
May 14, 1996: H4933-H4934 and H2939 the remarks of Rep. Douglas Peterson and Rep.
Paul McHale in opposition to language in Section 220 denying funding for STOVL versions.
34 The Defense Department’s Institute for Defense Analysis (IDA) provided the defense
committees information and periodic briefings in response to these questions during 1996-
1997. Conversations with Dr. Dean Simmons, IDA, August 21 and November 4, 1997.

CRS-10
affordability rather than specific preferences among these three programs. When
language directing the Defense Department to indicate a preference in case of
insufficient funds for all three programs was proposed during Senate debate on the
defense authorizations bill, the provision was soundly defeated.
The House National Security Committee’s35 FY1998 authorization report
directed the Defense Department by February 15, 1998, to provide details on funding
for full development and flight testing of an alternative engine for the JSF. In
recommending decreased Air Force R&D funding, the report noted the Committee’s
concern “that the current pace of tactical aviation programs is both unaffordable and
not coordinated with the ... Quadrennial Defense Review.”36
Congressional action on the JSF in FY2001 again raised concerns about
schedule and affordability. Specifically, more than one committee voiced concern
regarding the acquisition strategy. Some were concerned that DoD would abandon
its “winner take all strategy” and split the award of the EMD contract between the
leading candidates. While this strategy might prove beneficial to the U.S. aerospace
industrial base in the long run, legislators opined that it would significantly raise JSF
costs. Appropriations conferees (H.R. 4576, H.Rept.106-754. p. 220) endorsed
DoD’s winner take all strategy, and wrote that “...industrial base concerns can best
be addressed after the source selection decision.” Also, more than one committee
raised concerns about the maturity of key JSF technologies and whether the program
was ready to graduate from the demonstration/validation phase to EMD as per DoD
plans.
Reflecting a three month delay in moving the JSF program to the EMD phase,
appropriations conferees cut the FY2001 EMD request by $393 million, and
increased concept development funds, for a net reduction to the program of $168
million. The conferees also directed that all flight testing – including at least 20
hours for the STOVL design – should be completed and fully evaluated prior to the
selection of a JSF EMD design (H.R. 4205, p. 717).
Design and Performance
Contrary to some misconceptions that the Joint Strike Fighter would be one
aircraft used by several services for different missions, the program envisions the
development and production of three highly common variants: a land-based CTOL
version for the Air Force, a carrier-based CTOL version (CV) for the Navy, and a
STOVL version for the Marines and the Royal Navy. The JSF program is a family
of aircraft, which uses a mix of components, systems, and technologies with
commonality projected at 70 to 90 percent in terms of production cost. Many of the
high-cost components are common, including engines, avionics, and major structural
35 The House National Security Committee was renamed the House Armed Services
committee in January 1999.
36 U.S. Congress. House National Security Committee. FY1998 National Defense
Authorization Act; report on H.R. 1119. Washington, U.S. Govt. Print. Off., 1997. 105th
Congress, 1st session. H.Rept. 105-132: 189-190, 212, 243.

CRS-11
components of the airframe. Former Secretary of Defense William Cohen stated that
the JSF’s joint approach “avoids the three parallel development programs for service-
unique aircraft that would have otherwise been necessary, saving at least $15
billion.”37
The winning Lockheed Martin design closely resembles the F-22 Raptor.
However, the Lockheed STOVL concept which employs a shaft-driven lift fan
connected to the main engine with extra thrust provided by vectoring nozzles, is a
new and innovative approach. The Boeing appeared in many ways more innovative
than the Lockheed design, featuring a solid wing (with considerable space for
internal-fuel) and a single direct-lift engine with nozzles for vectored thrust in
STOVL operations (similar to the AV-8 Harrier’s Pegasus engine). The design
proposed by the McDonnell Douglas, Northrop Grumman, and British Aerospace
team was an almost tailless aircraft, powered by separate lift and lift/cruise engines.
The use of separate engines was reportedly a factor in the rejection of this design.38
The JSF will be powered by engines derived from the F-22's Pratt & Whitney
F119 power plant, with a General Electric F120 derivative to be developed as a
competing alternative engine.39 The engines of both designs will include components
made by Allison (now owned by Rolls-Royce, which developed and produced the
Pegasus engines powering Harrier STOVL aircraft since the 1960s). The JSF
program would benefit from the broad engineering experience and the competitive
environment provided by Pratt & Whitney, General Electric, and Allison/Rolls-
Royce, but despite potential savings through competition the development of an
alternative power plant would significantly increase the JSF’s development cost. For
this reason, there has been some opposition in the Defense Department to an alternate
JSF engine, although there has been considerable support in Congress since 1996.40
All JSF planes will be single-engine, single-seat aircraft with supersonic dash
capability and some degree of stealth (low observability to radar and other sensors).
Combat ranges and payloads will vary in the different service variants. For example,
37 Letter from Secretary of Defense William S. Cohen to Rep. Jerry Lewis, June 22, 2000.
Transcript made available by Inside the Airforce. June 23, 2000
38 Sweetman, Bill. Decision Day Looms for Joint Strike Fighter. Jane’s International
Defense Review,
September 1996: 36-39, 42-43; Bender, Bryan and Tom Breen. Boeing,
Lockheed Martin Win JSF Demonstrator Contracts. Defense Daily, November 18, 1996:
JSF special report.
39 Sweetman, Bill. Vectored Thrust Takes Off, Competition for JAST’s Engine Design
Grows. Jane’s International Defence Review, April 1996: 30-32, 35-36, 39; Goodman,
Glenn W. The Second Great Engine War. Armed Forces Journal International, April 1996:
18; Warwick, Graham. GE YF-120 Wins the Vote as JSF Competitive Engine. Flight
International,
May 22-28, 1996: 17; Allison Unit Eyes JSF Alternate Engine Deal.
Aerospace Daily, November 21, 1996: 1-3 (Aerospace Propulsion Extra section); JSF
Alternate Fighter Engine Program Fleshing Out. Aerospace Daily, May 20, 1997: 279.
40 Dual Engine Development Could Saddle JSF with up to $800 Million Bill. Inside the
Navy,
August 5, 1996: 2; Despite Demand for Second JSF Engine Source, F120 Comes up
Short. Aerospace Daily, October 18, 1996: 102; U.S. Congressional Budget Office. A Look
at Tomorrow’s Tactical Air Forces
by Lane Pierrot and Jo Ann Vines. January 1997: 53.

CRS-12
as currently planned, range requirements would be 450-600 nautical miles (nmi) for
the Air Force, 600 nmi for the Navy, and 450-550 nmi for the Marine Corps. As
projected in late 1997, Air Force and Navy versions would carry two 2,000-lb
weapons internally, with the STOVL versions for the Marine Corps and the Royal
Navy carrying two 1,000-lb weapons internally. All versions will also carry AIM-
120 AMRAAMs (advanced medium-range air-to-air missiles, with a range of about
26 nmi/48 km depending on altitude41). Space will be reserved for an advanced gun,
if one is found that meets operational requirements at an affordable cost.42 JSF
requirements dictate that the aircraft’s gun must be able to penetrate lightly armored
targets. A 27-millimeter cannon made by the German company Mauser, which is
used by many European fighter programs is a likely candidate.43
Performance features in regard to radar signature, speed, range, and payload will
be determined on the basis of trade-offs between performance and cost, with the
latter being a critical factor. Program officials have emphasized that such cost and
performance tradeoffs are critical elements of the current development phase, since
these tradeoffs will be the basis for the joint-service operational requirements that
will determine the selection of a single contractor team for the EMD phase of full-
scale development to begin in 2001.44 The 1997 QDR report observed that
“Uncertainties in prospective JSF production cost warrant careful Departmental
oversight of the cost-benefit tradeoffs in design to ensure that modernization and
force structure remain in balance over the long term.”45 In other words, production
costs must be low enough that these aircraft can be bought in sufficient quantities to
maintain desired force levels. Thus, the parameters of the JSF’s performance and
operational capabilities are subject to change for reasons of cost, technological
developments, and future threat assessments.
Foreign Sales and Allied Participation
Potential foreign sales and allied participation in the JSF program have been
actively pursued as a way to defray some of the cost of developing and producing the
aircraft. Congress insisted from the outset that the JAST program include ongoing
efforts by the Defense Advanced Research Projects Agency (DARPA) to develop
more advanced STOVL aircraft, opening the way for British participation.

41 Zaloga, Steven J. AIM-120 AMRAAM in World Missiles Briefing. Teal Group Corp.,
January 1997: 5.
42 Advanced Gun Seen Likely for Some Joint Strike Fighters. Aerospace Daily, May 5,
1997: 195. Appendix C provides further details on JSF operational/performance and cost
requirements as projected in late 1997.
43 Adam Hebert. “Strike Fighter Gun Choice Signals New Era For U.S. Aircraft Cannon.”
Inside the Air Force. October 27, 2000.
44 Tradeoffs Will Be Made to Contain JSF Costs. Aerospace Daily, September 26, 1997:
469.
45 U.S. Department of Defense. Report of the Quadrennial Defense Review [by] William
S. Cohen, Secretary of Defense. May 1997: 46.

CRS-13
Various contractual relationships with allied governments and foreign firms are
possible, depending on the amount of funding invested in the program, ranging from
the British government’s participation as a collaborative partner to associate partners,
informed customers, observers or FMS participants. On December 20, 1995, the
U.S. and U.K. governments signed a memorandum of understanding (MOU) on
British participation in the JSF program as a collaborative partner in the definition
of requirements and aircraft design. This MOU committed the British government
to contribute $200 million towards the cost of the 1997-2001 concept demonstration
phase.46 British Aerospace, Rolls-Royce, and other U.K. defense firms that have long
been involved in major U.S. aircraft programs are expected to be subcontractor
participants in the JSF program.47 On January 17, 2001 the United States and the
United Kingdom signed an MOU that committed the British government to spend
$2 billion supporting the JSF EMD phase. Britain’s investment equates to
approximately eight percent of the EMD program, and has been described by many
analysts as a boon for the JSF program. Britain’s – and other allies’ – participation
in the program makes it much more difficult for Congress or the Administration to
cancel the program, they say.48 In his nomination hearing, DoD acquisition chief Pete
Aldridge testified that the any decision on the fate of the JSF would have to weigh
its “international implications.” 49
On April 16, 1997, the Dutch and Norwegian governments signed an MOU,
which was later signed by the Danish government on September 10, 1997,
committing a total of $32 million from these NATO allies, who see the JSF as a
replacement for the F-16 fighters they have operated since the late 1970s. On
January 2, 1998, the Canadian government signed an MOU agreement, committing
$10 million to the JSF program as an observer of its management innovations.
Canadian officials have stated that there is no commitment to buy the aircraft,
however, and that Canada does not expect the JSF to replace its F/A-18A/Bs
(operated as the CF-118A/B since the early 1980s).50
On April 21, 2000 it was reported that DoD had extended offers to Australia and
Belgium to become “partners” in the JSF development. Both countries declined the
offer. However, in June 2002, Australia changed its position, and pledged $150
46 U.S., U.K. Sign JAST Agreement. Aerospace Daily, December 21, 1995: 451.
47 Since the 1970s many European and Japanese firms have been major participants in U.S.
aircraft, avionics, and munitions programs as subcontractors or affiliates of U.S. firms; e.g.,
F-15, F-16, AV-8, F/A-18, and AWACS programs.
48 Greg Schneider. “Britain Backs Joint Strike Fighter Effort.” Washington Post. January 18,
2001. “British commitment seen as major boost to the Joint Strike Fighter.” Inside the Air
Force.
January 19, 2001.
49 Marc Selinger. “JSF decision should weigh ‘international implications,’ nominee for
acquisition post says. Aerospace Daily. April 27, 2001.
50 Conversations with Canadian Embassy officials, February 13, 1998; Canada, U.S. Sign
MOU for JSF Program. Navy News and Undersea Technology, February 9, 1998:7; Joint
Strike Fighter: Opportunities for Canadian Industry.
Report prepared by BDM
International, Inc. for the Government of Canada, March 1997: 15p.

CRS-14
million toward JSF EMD. 51Turkey, Italy, Denmark, Norway and the Netherlands
have accepted roles in the JSF EMD phase. While the exact details are still to be
determined, participation in EMD is expected to cost each country from $250 million
to $1.25 billion over 11 years. The smallest financial input a country can make to be
a JSF partner is 1-2 percent of EMD cost.52 The main benefit derived from
participation is a strong commitment by the U.S. to export the aircraft to partner
countries once the JSF is in production. 53 Another benefit of participation could be
the transfer of military aviation expertise. Turkish officials have stated that
participation in the JSF program is a “major opportunity for our defense industry.”54
In early February 2002, Canada and the Netherlands joined Britain as foreign
partners in the JSF’s SDD phase. As a “Level III” partner, Canada pledged to
provide $150 million over the next 10 years for the system development and
demonstration phase.55 The Netherlands committed $800 million to the program,
making it a “Level II partner.”56 The Dutch parliament must approve Prime Minister
Kok’s decision.
JSF program managers are now offering an FMS level of participation for those
countries unable to commit to partnership in the JSF’s EMD phase. JSF officials
have discussed the aircraft with the defense staffs of many allied countries as
prospective customers, including Germany, Israel, Italy, Turkey, Singapore and
Spain. Britain’s Royal Air Force (RAF) as well as its Royal Navy may also buy some
JSF aircraft over the long run. In the near term, however, the RAF is expected to buy
the Eurofighter, which is to be produced by British, German, Italian, and Spanish
companies as Europe’s next-generation fighter/attack plane.57 The Polish government
is reportedly leaning toward an FMS investment of $75 to $100 million in the JSF
program.58
51 Nick Jonson. “Australia to Join Joint Strike Fighter Program as Level 3 Partner.”
Aerospace Daily. June 28, 2002.
52 Robert Wall. Pentagon Broadens Foreign Options for JSF. Aviation Week & Space
Technology
. June 5, 2000: 46.
53 Australia, Belgium Enter Joint Strike Fighter Program as EMD Partners. Inside the Air
Force.
April 21, 2000.
54 Bekedil, Burak Ege and Umit Enginsoy. Turks to Pay up to $1 Billion to Join JSF
Development. Defense News. July 17, 2000:6.
55 Jim Garomone. “Canada Joins Joint Strike Fighter Effort. American Forces Press Service.
February 7, 2002.
56 “Dutch Government Decides to Join Joint Strike Fighter.” Defense Daily. February 11,
2002.
57 Michael J. Witt. Britain’s Air Force Considers JSF as Harrier Follow-on. Defense News,
January 12-18, 1998: 1, 27. Scott, Richard and Nick Cook. UK Air, Naval Forces Sign on
Joint Future Aircraft. Jane’s Defence Weekly, January 7, 1998: 3.
58 Grzegorz Holdanowicz. “Poland Steps Up Interest in JSF.” Jane’s Defense Weekly. July
18, 2001.

CRS-15
As of July 2002, eight countries have pledged about $4.5 billion to join in JSF
development. 59
Alternatives to JSF
According to some critics of the program, the U.S. armed services have
alternatives to the JSF in the Air Force F-16, the Marine Corps AV-8B, and the Navy
F/A-18E/F, which could be produced in upgraded and modified versions that would
maintain force structures while providing at least some of the performance
capabilities promised by the JSF. Moreover, they argue that more advanced versions
of current aircraft designs might be developed and procured at less cost and with less
risk of delays and technological problems than an entirely new family of aircraft
variants may entail. Upgraded versions of existing aircraft designs could probably
also be sold to allied governments that are likely to be JSF customers.
Noting the JSF’s projected cost as well as past experience with new aircraft
programs, Congressional Budget Office (CBO) analysts have suggested options that
would either cancel development of the JSF, reduce procurement of the aircraft, or
alter the types developed and their distribution among the services. CBO analysts
have identified a number of alternatives to developing, procuring, and using JSF
aircraft as currently proposed. These alternative options include reliance on
modification of current fighter/attack planes already in operation or expected to be
in service soon, such as the Navy F/A-18E/F and the Air Force F-22, as well as
procuring fewer JSFs than proposed or none of these aircraft, with their place being
taken by F-16s, AV-8Bs, and F/A-18E/Fs.60
A CBO report requested by the House National Security Committee’s
Subcommittee on Military Research and Development and published in January 1997
analyzed the budgetary implications of the Administration’s tactical aircraft
modernization plans in regard to the JSF, F-22, and F/A-18E/F programs. The study
evaluated one option that assumed procurement of only the 1,320 JSFs planned for
Air Force buys through 2020 but no Marine Corps or Navy JSF versions; this was
estimated to save about $2.5 billion FY1997 dollars in average annual procurement
funding over the 2002-2020 period compared to current Administration plans,
estimated to cost some $11.9 billion annually. Another option assumed procurement
of 660 STOVL variants of the JSF for the Marines and the Navy, with the Air Force
using F-16s and F-15Es in lieu of JSFs and F-22s, respectively, which was estimated
to save about $4.5 billion (FY1997 $) per year from 2002 to 2020. The study also
evaluated a share-the-pain option that would cap procurement funding for
fighter/attack planes in 2002-2020 at the same level as the historical average for Air
Force and Navy fighter/attack aircraft funding from 1974 to 1997. This option would
continue current development plans, but because of the JSF cost cap it would be able
to purchase only about 40% of the JSFs currently planned (42% for the Air Force,
30% for the Marine Corps, and 51% for the Navy) and about 50% of planned F-22s
59 Katie Fairbank. “Strike Fighter’s Support Extends.” Dallas Morning News. July 12, 2002.
60 U.S. Congressional Budget Office. A Look at Tomorrow’s Tactical Air Forces by Lane
Pierrot and Jo Ann Vines. January 1997: 55-71.

CRS-16
and 58% of planned F/A-18E/Fs, with estimated average savings of $5.6 billion
(FY1997 $) in annual procurement funding. Each of these options presents risks and
opportunities. The last option, for instance would save $5.6 billion (FY1997 $) in
annual procurement funding but would also result in a smaller and older fighter force
with less combat capability.
Lockheed Martin has initiated a study, and has briefed initial results to Air Force
officials, of a radically modified version of the Raptor called the FB-22
(Fighter/Bomber). The purpose of this variant would be to significantly increase the
F-22's air-to-ground capabilities; primarily through a redesign that would double the
aircraft’s range, and significantly increase the aircraft’s internal payload. These
improvements would likely result in some performance tradeoffs, such as reduced
acceleration and maneuverability.
Although not officially part of the F-22 program, and still very much in the
conceptual phase, some Air Force leaders have expressed enthusiasm for the idea.
Secretary of the Air Force James Roche, reportedly touts the FB-22 idea as the
potential platform of choice for providing better close air support for tomorrow’s
ground forces.61 Other Air Force leaders appear less enthusiastic at this point.62
Potential costs and schedule of the FB-22 concept are still quite notional. How this
multi-role aircraft would compete with – or conversely compliment – the JSF has
not yet been determined.
Major Issues
The Joint Strike Fighter program poses a number of policy issues concerning (1)
the need for such new aircraft to cope with future military threats, (2) the
affordability of this program in its full-scale development and production phases after
2000, (3) the feasibility of such a joint-service approach to diverse service
requirements, and (4) the implications for the U.S. defense industrial base.
Need for New-Generation Aircraft
Some argue that future threat scenarios will not require the combat capabilities
promised by JSF aircraft. According to this view, continued production of modified
versions of the Air Force F-16, the Marine Corps AV-8B, and the Navy F/A-18E/F
along with the Air Force’s stealthy B-2 bombers and F-22 fighters in conjunction
with sea-launched missiles and air-launched precision-guided munitions would
suffice for the most probable combat scenarios.63 As noted above, CBO analysts
considered the relative costs of several options involving greater reliance on upgrades
of existing aircraft vs. development and procurement of the JSF. GAO analysts have
also questioned the need for new-generation aircraft such as the F-22 and the F/A-
61 Ron Laurenzo. “Roche Envisions Close Air Support F-22.” Defense Week. July 1, 2002.
62 Bill Sweetman. “Smarter Bomber.” Popular Science. June 25, 2002.
63 Center for Strategic and Budgetary Assessments. U.S. Tactical Aircraft Plans: Preparing
for the Wrong Future?
by Steven Kosiak, CSBA Backgrounder, October 3, 1996: 5-10.

CRS-17
18E/F as well as the JSF, arguing that current aircraft would provide more capability
than was needed during the 1991 Gulf War and concluding that it would be unlikely
that potential adversaries could prevent U.S. forces from achieving their military
objectives in future conflicts.64
JSF proponents argue that it would be more cost-effective to acquire new-
generation aircraft than to upgrade current aircraft to such an extent that they could
perform effectively after 2010, maintaining that existing planes would require major
modifications at considerable cost and would provide less combat effectiveness than
a new JSF family of fighter/attack aircraft. In this view, the proliferation of Russian
and other advanced surface-to-air and air-to-air missiles to hostile countries is likely
to continue, which would pose much more serious threats to U.S. and allied aircraft
than they faced in the 1991 Gulf War. Moreover, many currently operational aircraft
will need to be replaced by the time JSF types could be in full production in the
2010s, when most of these planes will be about twenty years old, according to
defense analyst Lawrence Korb, who recommends reducing procurement of F-22s
and F/A-18E/Fs in order to fund the JSF program.65 Given the difficulties of
accurately predicting what might be needed in future conflict scenarios, how combat-
effective JSF aircraft would be, and what it would cost to develop, procure, and
operate these aircraft, any analyses of military requirements and the combat
effectiveness and budgetary costs of such new-generation aircraft allow for a range
of conjecture and debate.
Affordability of Program
JSF program officials anticipate major savings due to a high degree of
commonality in components and systems among the three versions, which are to be
built on a common production line. They also expect significant savings to be
achieved by basing performance requirements on tradeoffs between cost and
performance features, with industry and the services working together as a team. The
contractors are expected to use new technologies and manufacturing techniques that
reportedly could greatly reduce the JSF’s development and production costs; e.g.,
wider use of composite materials in place of metal, CAD/CAM (computer-aided
design/computer-aided manufacture) systems, and a recently developed plastic
laminate that can be used instead of paint on the airframe.66 Composite materials
64 U.S. General Accounting Office. Combat Air Power: Joint Mission Assessments Needed
Before Making Program and Budget Decisions.
GAO/NSIAD-96-177, September 20, 1996:
9-10. See also GAO testimony before the House National Security Committee’s
Subcommittees on Military Research and Development and Military Procurement, June 27,
1996. GAO/T-NSIAD-96-196: 4-5 (“Forces of Potential Adversaries Are Limited and
Likely Slow to Improve”).
65 Korb, Lawrence J. Should We Pay $21 Billion for This Plane? — Yes, It’s a Bargain for
the Future. Christian Science Monitor, November 25, 1996: 19.
66 Steidle, Craig E. The Joint Strike Fighter Program. Johns Hopkins APL Technical Digest,
v. 18, no. 1, January-March 1997: 6-8, 10-13, 17-18; Kaminski Praises Industry Response
to DOD Initiatives. Aerospace Daily, February 16, 1996: 249; Bender, Bryan. `Paintless’
Design to Save JSF an Estimated $3 Billion. Defense Daily, July 18, 1997: 108-109.

CRS-18
have frequently proven more expensive than metal, raising questions about the
savings to be achieved via composites.
Program officials are also counting on the availability of adequate funding to
procure the aircraft at efficient rates of production. Moreover, they expect either
Boeing or Lockheed Martin to be able to produce the JSF at less cost than was the
case with previous military aircraft, when cost controls were less compelling. For
example, the F-16's production costs declined by 38% between mid-1992 and early
1997, largely due to more efficient production methods and reduced labor costs, even
though production rates fell from 20 to 25 aircraft per month in 1991 to about six
aircraft per month in 1994-95, soon after Lockheed Martin acquired the F-16 plant
in Fort Worth, Texas, from General Dynamics.67 Similarly, Boeing’s experience in
high-volume production of commercial transport planes is expected to facilitate cost-
efficient production of military aircraft such as the JSF.68
Others doubt these optimistic forecasts, citing past experience with new aircraft
programs, concern about budget deficits, and support for non-defense programs in
this post-Cold War period, which might preclude procurement of the JSF at projected
rates.69 According to this view, we cannot afford to launch a new JSF program while
having to continue buying improved and ever more expensive versions of current
planes to maintain force structures during what may be a long interim if the JSF runs
into technical or budgetary problems.70 It can also be argued that critical performance
features may have to be traded off to make the JSF affordable enough to be procured
in the quantities deemed necessary to maintain force structures.71
Disagreements over performance and capability versus cost and affordability
may threaten multi-service support of the JSF program. CBO analysts have noted
that the performance/capability compromises required to achieve commonality “...
could mean that the service with the most modest requirements in terms of capability
(the Air Force) would have to accept a higher price and capability [compared to the
F-16] than it needs so that the needs of the services with the greater capability
requirements (the Navy and Marine Corps) could be met.” They argue that if history
is a guide, JSF planes “... are apt to be more costly than Air Force requirements might
67 Scott, William C. Lockheed Martin Reconstructs TAS [Tactical Aircraft Systems] Unit
as `Fighter Enterprise.’ Aviation Week & Space Technology, July 28, 1997: 64-66.
68 Schneider, Greg. Boeing Aftershocks. The [Baltimore] Sun, December 22, 1996: 1D, 3D.
69 For discussion of budgetary constraints and competing defense programs, see Center for
Strategic and Budgetary Assessments. U.S. Tactical Aircraft Plans: Preparing for the
Wrong Future?
by Steven Kosiak, CSBA Backgrounder, October 3, 1996: 4-5.
70 Muradian, Vago and John Robinson. Public Confidence at Odds with Private Concerns
about Tacair. Defense Daily, November 19, 1996: 277; Shanahan, John J. Should We Pay
$219 Billion for This Plane? — No, It’s Squandering on Imaginary Enemies. Christian
Science Monitor,
November 25, 1996: 19.
71 The difficulties of balancing performance and cost in the JSF program are discussed in
detail in CBO’s A Look at Tomorrow’s Tactical Air Forces, January 1997: 48-50; see also
Cole, Jeff, Andy Pasztor, and Thomas E. Ricks. The Sky, the Limit: Do Lean Times Mean
Fighting Machines Will Be Built for Less? Wall Street Journal, November 18, 1996: A1.

CRS-19
dictate, but provide less capability than the Navy might desire.” They note further
that “... price increases and decreases in capability are consistent with the history of
many single service programs as well,” since development programs usually provide
less capability at higher prices than early estimates suggest, and they conclude that
the JSF program’s success “... will depend on persuading the services to lower their
expectations from the stand-alone programs they might have without the Joint Strike
Fighter.”72
Feasibility of Joint-Service Aircraft
Those skeptical of developing aircraft to meet the needs of several services often
point to the TFX program in the 1960s as a classic example of DOD’s failure to
produce an aircraft that was both carrier-capable as well as suitable for land-based
Air Force operations.73 Analogies between TFX and JSF are rejected, however, by
those who argue that TFX problems will be avoided in the JSF program by
developing variants of a family of aircraft that can meet service requirements while
sharing many common components and subsystems, such as engines, avionics,
communications, and munitions.
Their argument is supported by an analyst who compared the origins of the two
programs and concluded that JSF has thus far avoided the pitfalls of TFX by an
apparent commitment to much better coordination of service requirements and the
development of three variants for the Air Force, Navy, and Marine Corps/Royal Navy
instead of one all-purpose airframe for both land- and carrier-based operations.74
CBO analysts have noted, however, that “Many defense programs begin with the
expectation of joint purchases by the services, but those expectations are seldom
met.” For example, in the mid-1980s the Navy and Air Force planned to buy each
other’s next-generation aircraft: the Navy’s Advanced Tactical Aircraft — the A-12
that was cancelled in 1991 — and the Air Force F-22, in which the Navy has not been
interested since the early 1990s. Similarly, the V-22 program began in 1981 as the
JVX tilt-rotor aircraft to be used by the Army, Marine Corps, Navy, and Air Force,
but the Army soon dropped out and the other services reduced their projected buys.75
While designing an aircraft that meets both the Air Force’s and the Navy’s
needs is challenging, the Marine Corps’ STOVL requirement may be what makes or
breaks this joint program. At one point, some senior Air Force and Navy officials
72 U.S. Congressional Budget Office. A Look at Tomorrow’s Tactical Air Forces by Lane
Pierrot and Jo Ann Vines. January 1997: 48-50.
73 For background on the TFX program, which produced the Air Force’s F-111 and FB-111
strategic bombers in the 1960s, see Art, Robert. The TFX Decision — McNamara and the
Military.
Boston, 1968; see also and Coulam, Robert. Illusions of Choice. Princeton, 1977.
74 Rolleston, Mort. Learning the Lessons of TFX: the Joint Strike Fighter and Acquisition
Reform.
Unpublished manuscript by Master of Arts graduate in Security Policy Studies,
Elliot School of International Affairs, George Washington University, February 1997.
75 U.S. Congressional Budget Office. A Look at Tomorrow’s Tactical Air Forces by Lane
Pierrot and Jo Ann Vines. January 1997: 47-48. For discussion of the V-22 program, see
CRS Issue Brief IB86103, V-22 Osprey Tilt-Rotor Aircraft Program.

CRS-20
expressed interest in the JSF’s STOVL variant, which these services might use if
developments in propulsion technology result in STOVL aircraft with the range,
payload, and supersonic speed that Air Force and Navy operators consider
necessary.76 Air Force and Navy procurement of STOVL as well as CTOL versions
of the JSF would reduce the unit costs of these aircraft, with favorable implications
for the program’s affordability and multi-service support in the annual competition
for funding.

The costs and complications of pursuing the STOVL variant, however, are the
impetus behind a Navy suggestion that it be cancelled, and that the Marine Corps buy
the CV JSF instead. Contractors counter, however, that early STOVL technical
challenges have been overcome.77 Others point out that cancelling the STOVL
version of JSF is complicated by the UK’s investment in the program. Regardless,
DoD is studying the incorporation of Marine Corps fixed wing aviation into the
Navy, which would eliminate the requirement for STOVL.78
Multi-service support of the JSF has also been threatened by concerns on the
part of some Navy officials that the costs of developing these aircraft may be too
high, given the service’s other funding priorities. In August 1997, the Navy began
a review of JSF costs, raising questions about the service’s continued support. Chief
of Naval Operations Admiral Jay Johnson described this cost review as a routine
exercise that in no way indicated a lack of support for the program, adding that “The
Navy is committed to the Joint Strike Fighter as much as our shipmates in the Marine
Corps and the Air Force.”79 The Air Force and the Marine Corps are the major
participants in the program in terms of projected procurement; however, the Air
Force is strongly committed to funding its F-22 stealth fighter/attack plane while the
Marine Corps is strongly committed to funding its V-22 tilt-rotor aircraft. Perhaps
concerned that the Navy and Air Force might not fully support the Joint Strike
Fighter program in their long-term budget plans and that this lack of support would
slow down or even jeopardize the program, former Deputy Defense Secretary Rudy
de Leon issued a letter on May 2, 2000 to leaders of both departments, directing them
to fully fund the tri-service fighter program. Stating that the JSF program was at a
“critical juncture,” de Leon reminded the Navy and Air Force leadership that the JSF
will be the “cornerstone of U.S. tactical aviation for decades to come.”80
76 Caires, Greg and Tom Breen. Global Power Office to Push for STOVL Version of JSF.
Defense Daily, May 1, 1997: 184.
77 Adam Hebert. “Early STOVL-Variant Challenges Are In The Past, JSF Contractors Say.”
Inside the Air Force. March 16, 2001.
78 Frank Wolfe. “Navy to Submit Study on Incorporating Marine Corps Fixed-Air Wing.
Defense Daily. September 4, 2001.
79 Ricks, Thomas E. Navy Begins to Question New Attack Jet That Air Force and Marines
Support. Wall Street Journal, September 9, 1997: A4; Bender, Bryan. Navy Says It’s Fully
Committed to Joint Strike Fighter. Defense Daily, September 12, 1997: 423-424.
80 Castelli, Christopher. Air Force, Navy Directed to Fully Fund Joint Strike Fighter
Program. Inside the Air Force. May 5, 2000.

CRS-21
Implications for U.S. Defense Industry
Some fear that those firms selected as prime contractors for both development
and production of the JSF (Boeing or Lockheed Martin for the airframe and Pratt &
Whitney or General Electric for the engine) will dominate U.S. defense industry to
such an extent that competition will be seriously impaired.81 These concerns are
increased by the continuing consolidation of U.S. aircraft and defense companies,
highlighted in 1997 by Boeing’s acquisition of McDonnell Douglas and Lockheed
Martin’s proposed purchase of Northrop Grumman. Competition in weapons
production is important not only because of cost-control implications but also for
preservation of a broad base of technical skills and competing ideas. Lawrence Korb
has warned that “the Pentagon’s enthusiastic embrace of defense industry
consolidation will ultimately leave it dependent on three giant companies that will
have neither the incentive nor the capacity to come up with the technology
breakthroughs that have been the foundation of U.S. military power.”82
Others believe that there will still be enough work on combat aircraft programs
to sustain a robust and competitive defense industrial base, arguing that firms not
awarded prime contracts can still play important and profitable subcontractor roles
in the JSF program as well as compete in other weapons programs.83 In this view,
production of the JSF could be shared by Boeing and Lockheed Martin, just as
production of the F-22 is currently shared by these companies, which would preserve
some degree of competitiveness in development and production of fighter aircraft
although with additional budgetary cost.
To ensure that the “winner-take-all” strategy is in fact in the country’s best
interests, DoD acquisition chief Jacques Gansler empaneled a three-member
committee to study the issue. On June 22, 2000 Under Secretary of Defense Gansler
announced that for now, DoD would adhere to its original plan to award the JSF
contract to a single company. In a letter to Rep. Jerry Lewis, Secretary of Defense
William S. Cohen wrote “The Department has examined a number of options for
continuing the JSF program once concept demonstration is completed. These options
all assume the selection of a single, winning design. They range from winner-take-all
to competition throughout production.” Cohen also stated that DoD and the RAND
Corp. would continue to examine these options so that the next Administration could
make their own judgement on the strategy that most prudently addresses industrial
base concerns. In a letter to the leadership for the Senate Armed Services Committee,
Undersecretary of Defense for Acquisition Aldridge confirmed the Bush
Administration’s adherence to the winner take all strategy.
81 Aboulafia, Richard. From JAST to JSF — The Future of the Combat Aircraft Business,
or More Doomed Paper Airplanes. Military Technology, May 1996: 84.
82 Pearlstein, Steven. Boeing Free to Purchase McDonnell, Washington Post, July 2, 1997:
A1.
83 Fulghum, David A. and John D. Morocco. Final JSF Competition Offers No Sure Bets.
Aviation Week & Space Technology, November 25, 1996: 20-22.

CRS-22
RAND released its study of DoD’s “winner-take-all” strategy in April 2001 and
endorsed this strategy. Their study found it unlikely that DoD would recoup costs
through establishing a second production line, and suggested that the best way to
keep costs down would be to give production to one team, and compete future
upgrades to the aircraft.84 Aerospace experts are divided on the feasibility of pursuing
RAND’s approach.
The JSF program could also have a strong impact on the U.S. defense industry
through export. Most observers believe that the JSF could dominate the combat
aircraft export market much as the F-16 has. Some estimate that the potential export
market for the JSF approaches 4,000 aircraft. Like the F-16, the JSF appears to be
attractive due to its relatively low cost, flexible design, and promise of high
performance. Also, analysts note that during his first stint as Defense Secretary,
Donald Rumsfeld played an instrumental role in launching the F-16 program by
including foreign partners in the aircraft’s development.85 Many competitors,
including France’s Rafale, Sweden’s JAS Gripen, and the European Typhoon are
positioned to challenge the JSF in the fighter export market, or take its market share
if the program is cancelled. Also, few countries have expressed interest in buying
either the F-22 or the F/A-18E/F.
It can also be argued that the demand for civilian transport aircraft after 2000
will be strong enough to sustain a robust U.S. aviation industry, given the need to
replace aging aircraft with quieter and more fuel-efficient planes for expanding
domestic and international travel markets. For example, the worldwide fighter/attack
market in 2005 has been estimated to be worth about $13.2 billion while the
commercial jet transport market is projected to be worth about $43.5 billion at that
time. Compared with its European and Asian competitors, the U.S. aviation industry
appears to be well positioned to meet the needs of an expanding world market for
civil aircraft after the turn of the century.86 The extent to which such economic
conditions may preserve an adequate U.S. defense industrial base for the
development and production of combat aircraft is debatable, however, given the
significant differences between civilian and military aircraft requirements and
technologies.
84 Adam Hebert. “RAND: Funding Alternate JSF Avionics Teams Would Likely Benefit
DoD.” Inside the Air Force. April 6, 2001.
85 Vago Muradian. “Coffman: JSF Critical to Preserving U.S. Leadership in World Fighter
Market.” Defense Daily. February 26, 2001.
86 Aboulafia, Richard. Market Overviews — Commercial Jet Transports, Fighter/Attack
Aircraft in World Military and Civil Aircraft Briefing. Teal Group Corp., February-March
1997.

CRS-23
Appendix A: JSF Operational/Performance and
Cost Requirements*
Characteristics
USAF
USN
USMC
Range (nmi)a
450-600
600
450-550
Payload b
2000-lb
2000-lb
1000-lb
AIM-120
AIM-120
AIM-120
Speed
subsonic cruise with supersonic dash
speeds comparable to F-16 and F/A-18c
Affordability
$31 M
$31-38 M
$30-35 M
(FY94$)d
* Steidle, Craig E. The Joint Strike Fighter Program. Johns Hopkins APL Technical Digest, v. 18,
January-March, 1997: 9. For more current USAF payload requirements, see Muradian, Vago. AF
Seeks 2,000-Pound Weapons Capability in New JSF Requirement. Defense Daily, September 16,
1997: 445-447.
a Aircraft range is normally stated in nautical miles (nmi) of 6,080 ft, equivalent to 1.15 statute miles
(mi) or 1.85 kilometers (km).
b Muradian, Vago. AF Seeks 2,000-Pound Weapons Capability in New JSF Requirement. Defense
Daily, September 16, 1997: 445-447.
c The maximum dash speeds of these aircraft for short duration at high altitude with a clean
configuration are reportedly Mach 2 for F-16s and Mach 1.8 for F/A-18s. Mach 1,the speed of
sound, varies from 762 mph (662 nmph) at sealevel to 654 mph (576 nmph) at 35,000 ft. Jane’s
All the World’s Aircraft, 1996-97
: 649 and 657.
d These are the projected “flyaway costs” per aircraft in FY1994 dollars, which program officials have
stated as affordability goals. As noted above on p. 4, flyaway cost represents a significant part
of an aircraft’s procurement cost but does not include the cost of all procurement items nor the
costs of R&D and military construction.




CRS-24
Appendix B: Pictures of JSF Variants
X-35A
X-35B
X-35C